Abundance Monitoring of Juvenile Salmonids in Oregon Coastal Streams, 2001

Oregon Plan for Salmon and Watersheds

Monitoring Report No. OPSW-ODFW-2002-1

December 20, 2002

Jeffrey D. Rodgers

Western Oregon Rearing Project Oregon Department of Fish and Wildlife 28655 Highway 34 Corvallis, OR 97333

Citation: Rodgers, J.D. 2002. Abundance Monitoring of Juvenile Salmonids in Oregon Coastal Streams, 2001. Monitoring Program Report Number OPSW-ODFW-2002-1, Oregon Department of Fish and Wildlife, Portland.

Table of Contents

List of Figures	.ii
List of Tables	v
Executive Summary	vi
Chapter 1: Abundance of Juvenile Coho Salmon in Oregon Coastal Streams in the Summer of 2001	. 1
Introduction Methods Study Design Survey Methodology Data Analysis	. 1 . 1 . 1
Results Site Visitation Juvenile Coho Frequency of Occurrence Juvenile Coho Density Juvenile Recruitment	. 2 . 2 . 4
Chapter 2: Smith River Steelhead and Coho Monitoring Verification Study: Results of Juvenile Salmonid Sampling, Summer 2001	26
Introduction	26 26 26 28 28 28 28
Electrofishing and Snorkel Survey Comparisons	29 29 30
Appendix A. Location, sample sizes, average density, and percentage of pools containin juvenile coho at coastal Monitoring Area sites sampled in 2001	
Appendix B. Estimated number of juvenile salmonids and physical characteristics of sites sampled by electrofishing in Smith River, summer 2001. See Figure 23 for location of sample sites	
Appendix C. Number of pools snorkeled, fish observed, and density of juvenile coho, cutthroat and steelhead based on snorkel surveys in Smith River, summer 2001. See Figure 39 for location of sample sites	51

List of Figures

Page
Figure 1. Location of five Monitoring Areas for coho salmon along the Oregon Coast6
Figure 2. Location and status of candidate sites for juvenile coho sampling in the North Coast, summer 2001 (see Appendix A for geographic coordinates)
Figure 3. Location and status of candidate sites for juvenile coho sampling in the Mid-Coast, summer 2001 (see Appendix A for geographic coordinates)
Figure 4. Location and status of candidate sites for juvenile coho sampling in the Mid-South Coast, summer 2001 (see Appendix A for geographic coordinates)9
Figure 5. Location and status of candidate sites for juvenile coho sampling in the Umpqua, summer 2001 (see Appendix A for geographic coordinates)
Figure 6. Location and status of candidate sites for juvenile coho sampling in the South Coast, summer 2001 (see Appendix A for geographic coordinates)
Figure 7. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the North Coast (see Appendix A for site data)
Figure 8. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Mid-Coast (see Appendix A for site data)
Figure 9. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Mid-South Coast (see Appendix A for site data)
Figure 10. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Umpqua (see Appendix A for site data)
Figure 11. Percentage of pools that contained juvenile coho at each site snorkeled in the summer of 2001 in the South Coast (see Appendix A for site data)
Figure 12. Percentage (mean and standard error) of pools per site that contained juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998
Figure 13. Percentage of sites with at least one pool containing juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998
Figure 14. Density (mean and standard error) of juvenile coho at North Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m ² in graph indicates approximate full seeding level (see Rodgers 2000)

Figure 15. Density (mean and standard error) of juvenile coho at Mid-Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m ² in graph indicates approximate full seeding level (see Rodgers 2000)
Figure 16. Density (mean and standard error) of juvenile coho at Mid-South Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m ² in graph indicates approximate full seeding level (see Rodgers 2000)21
Figure 17. Density (mean and standard error) of juvenile coho salmon at Umpqua sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m ² in graph indicates approximate full seeding level (see Rodgers 2000)
Figure 18. Density (mean and standard error) of juvenile coho salmon at South Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m ² in graph indicates approximate full seeding level (see Rodgers 2000)
Figure 19. Density (mean and standard error) of juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998
Figure 20. Percentage of sites with an average density ≥ 0.7 fish/m ² in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 199825
Figure 21. Relationship between number of adults/mile in each coastal Monitoring Area and the number of juveniles/mile the following year, 1998-2000
Figure 22. Location of Smith River study area
Figure 23. Location of sites electrofished for juvenile salmonid abundance in Smith River, summer 2001. The numbers above the sample points are the site numbers for referencing data in Appendix B
Figure 24. Length of sites sampled by electrofishing in Smith River, summer 2001. Bars indicate the length of the site relative to other sites. The numbers above each bar is the length of the site (in meters)
Figure 25. Percentage of the length of each site electrofished in Smith River during the summer of 2001 that was dry stream channel, glide, pool, or riffle/rapid habitat
Figure 26. Average wetted width of sites electrofished in Smith River, summer 2001. Bars indicate the width of the site relative to other sites. Sites that were completely dry are indicated with an "X". The number above each bar is the average width of the site (in meters)
Figure 27. Maximum water depth of sites electrofished in Smith River, summer 2001. Bars indicate the maximum depth of the site relative to other sites. Sites that were completely dry are indicated with an "X". The number above each bar is the maximum depth of the site (in centimeters)

Figure 28. Substrate composition of wetted stream channels at sites electrofished in Smith River, summer 2001. Sites that were completely dry are indicated with an "X"
Figure 29. Number of juvenile steelhead (≥90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001
Figure 30. Number of cutthroat trout (>90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001
Figure 31. Number of 0+ trout (<90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001
Figure 32. Number of juvenile coho per meter of stream as determined by electrofishing in Smith River, summer 2001
Figure 33. Estimated population (and standard error bars around estimate) of juvenile salmonids as based on electrofishing in Smith River tributary streams, 2000 and 2001
Figure 34. Length frequency (in 5 mm increments) of steelhead > 90mm at sites electrofished in Smith River, summer 2001
Figure 35. Length frequency (in 5 mm increments) of cutthroat <u>></u> 90mm at sites electrofished in Smith River, summer 2001
Figure 36. Length frequency (in 5 mm increments) of trout < 90 mm at sites electrofished in Smith River, summer 2001
Figure 37. Length frequency (in 5 mm increments) of juvenile coho at sites electrofished in Smith River, summer 2001
Figure 38. Species composition of 0+ trout \geq 60 mm fork length at sites electrofished in Smith River, summer 200140
Figure 39. Location of Smith River sites visited by the snorkel crew during the summer of 2001. Solid circles are sites that were snorkeled, hollow circles are sites that had no pools meeting size or depth criteria for snorkel surveys, and hollow boxes are sites were poor water visibility precluded diver observations. The numbers above the sample points are the site numbers for referencing data in Appendix C. Site 98 and sites with numbers ≥ 400 were not in common with electrofishing sites
Figure 40. Percentage of pools at each site snorkeled in Smith River that contained at least one > 90 mm juvenile steelhead in summer 200141
Figure 41. Percentage of pools at each site snorkeled in Smith River that contained at least one <u>></u> 90 mm cutthroat in the summer of 2001
Figure 42. Percentage of pools at each site snorkeled in Smith River that contained at least one juvenile coho in the summer of 2001

List of Tables

Page
Table 1. Status of sites in coastal Monitoring Areas that were candidates for random juvenile coho surveys, summer 2001. 3
Table 2. The occurrence of juvenile coho as observed by snorkeling or electrofishing in coastal Monitoring Areas, 2001
Table 3. Comparisons between coastal Monitoring Areas sampled in 2001 of the mean percentage of pools per site that contained juvenile coho. Only those comparisons with a P level ≤ 0.2 are shown
Table 4. Differences between brood cycles within the same coastal Monitoring Areain the mean percentage of pools per site that contained juvenile coho.4
Table 5. Density (fish/m²) of juvenile coho observed by snorkelers in coastal Monitoring Areas in 2001.4
Table 6. Comparisons between coastal Monitoring Areas sampled in 2001 of the mean density of juvenile coho. Only those comparisons with a P level ≤ 0.2 are shown
Table 7. Differences between brood cycles within the same coastal Monitoring Areain the mean density of juvenile coho.5
Table 8. Comparison of variances, slopes, and elevations of regression lines fit to the relationship between adults/mile and juveniles/mile (data are depicted in Figure 21)
 Table 9. Population estimates of juvenile steelhead ≥ 90 mm, juvenile coho, trout < 90 mm, and cutthroat trout ≥ 90 mm in the wadeable stream reaches above Smith River Falls based on data obtained by electrofishing
Table 10. The average fish density and percentage of sites with at least one fish in pools snorkeled at wadeable and non-wadeable sites in Smith River, summer 2001.31
Table 11. The average density and number of sites with at least one coho, cutthroat, or steelhead as determined by snorkel and electrofishing surveys at 21 sites sampled by both methods in Smith River, summer 2001

Executive Summary

This report summarizes the results of two studies currently being conducted by the Western Oregon Rearing Project. The first study (Chapter 1) involves coast-wide sampling of the abundance of juvenile coho in coastal streams. In 2001, for the first time since the project began in 1998, the Mid-Coast replaced the Mid-South Coast as having highest mean density and frequency of occurrence of juvenile coho. Compared to data collected in 1998 for the same brood cycle, the frequency of occurrence of juvenile coho densities were higher in 2001 in the Mid-Coast and South Coast, while mean juvenile coho densities were higher in the North Coast, Mid-Coast, and South Coast. Based on the regression equation for each brood year, at an average adult escapement of 11 fish/mile, spawners in 1998 produced approximately half the number of juveniles (225/mile) compared to spawners in 1999 (525/mile) or 2000 (442/mile).

Chapter 2 describes the summer of 2001 results of a study in Smith River on the utility of electrofishing surveys in tributary streams and basin-wide snorkel surveys as a way of monitoring juvenile salmonid population trends. Compared to results obtained by electrofishing in the summer of 2000, juvenile coho increased and trout < 90 mm decreased, while \geq 90mm steelhead and cutthroat did not change in abundance. As in the summer of 2000, electrofishing in tributary streams found trout < 90 mm and cutthroat \geq 90 mm at over two-thirds of the sites sampled, while juvenile coho occurred at half of the sites. Steelhead \geq 90 mm were the least widespread, occurring at slightly over one-third of the sites in Smith River tributaries.

Basin-wide snorkel surveys in Smith River found the highest density of all three species of salmonids in the tributary stream reaches. Almost twice the percentage of sites in wadeable stream reaches had juvenile steelhead compared to non-wadeable reaches. Juvenile coho, however, were found more frequently in non-wadeable stream reaches, probably due to the fact that some wadeable stream reaches were inaccessible to adult coho.

Of trout \geq 90 mm that were classified by divers as either cutthroat or steelhead, 58.7% were identified as cutthroat and 41.3% as steelhead, similar to the proportions determined by electrofishing. For sites where both snorkel and electrofishing surveys were conducted, divers estimated 43% of the coho density and 67% of the cutthroat density estimated by electrofishing. Electrofishing density estimates for steelhead, however, were 78% of that estimated by snorkeling. For all three species, snorkel surveys observed at least one fish at more sites than electrofishing surveys.

Chapter 1: Abundance of Juvenile Coho Salmon in Oregon Coastal Streams in the Summer of 2001.

Introduction

In the summer of 1998, as part of the Oregon Plan for Salmon and Watersheds, the Oregon Department of Fish and Wildlife (ODFW) began a project to monitor juvenile coho in Oregon's coastal streams. This project is designed to monitor trends in abundance of juvenile coho salmon rearing in five coastal Monitoring Areas (Figure 1). This report summarizes the results obtained from data collected during the summer of 2001 and compares it to previously collected data.

Methods

Study Design

We have a target of surveying juvenile coho rearing at 50; one-kilometer long stream reaches in each Monitoring Area. Sites are randomly selected using Environmental Mapping and Assessment Program (EMAP) protocol (Stevens and Olsen 1999). This protocol involves the use of a Geographic Information System incorporating a 1:100,000 digital stream network of coho rearing distribution to insure an unbiased and spatially balanced selection of sample sites across each GCA. To maximize the usefulness of the data, we make provisions during the EMAP site selection process to incorporate as much overlap in sample sites as possible between the Western Oregon Rearing Project, ODFW's Aquatic Inventory Project, and ODFW's Coastal Salmonid Inventory Project. The total number of candidate sites for each year is divided equally into four visitation intervals: 1) sites that are visited annually; 2) sites that are visited once. The repeat visitation sites help to provide for better trend detection, while the single visitation sites enable us to incorporate changes in known fish distribution into our sampling universe.

Once completed, the EMAP site selection process provides the geographic coordinates (i.e. latitude and longitude) of each of the candidate sites. We then produce topographic maps showing the location of each sample point. Field crews use a handheld Geographic Positioning System to find the approximate location of the EMAP selected sample point, and then established 1 km long survey reaches that encompasses the sample point.

Survey Methodology

A two-person snorkel crew counts the number of juvenile coho at each of the sample reaches. To reduce problems associated with snorkeling in shallow or fast water habitat, only pools $\geq 6 \text{ m}^2$ in surface area and $\geq 40 \text{ cm}$ deep are snorkeled. Crewmembers either alternate the pools that they snorkel or one crewmember snorkels the entire reach. We measure the maximum pool depth and estimate the length and average width of all snorkeled pools.

Snorkel methodology involves a single upstream pass through each pool. Counts of the number of juvenile coho, cutthroat, steelhead, unknown trout, chinook, blackside dace, and redside shiner are recorded for each pool. Trout < 90 mm are not counted.

After snorkeling, the underwater visibility of each pool during the snorkel count is ranked on a scale of 0 to 3 where: 0 = not snorkelable due to extremely high hiding cover or zero water visibility; 1 = high amount of hiding cover or poor water clarity; 2 = moderate amount of hiding cover or moderate water clarity neither of which were thought to impede accurate fish counts; and 3 = little hiding cover and good water clarity. Only pools with a visibility rank of two or three are used in data analysis.

For sites in the North, Mid-Coast, Mid-South, and Umpqua where water poor water clarity prohibits snorkel surveys, electrofishing is used to provide information on the percentage of pools containing juvenile coho. Electrofishing is conducted using Smith-Root model 12-B backpack electrofishers following NMFS electrofishing guidelines (NMFS 2000). At poor water clarity sites, a single upstream electrofishing pass is made in each pool that meets the size and depth criteria for conducting snorkel surveys. If a juvenile coho is captured during electrofishing, the pass is terminated and coho are recorded as being present in the pool. No block nets are used for this sampling. Electrofishing is not conducted at any sites in the South Coast Monitoring area in order to comply directives from the National Marine Fisheries Service (NMFS).

To provide quality control of the snorkel data, and to information on temporal changes in abundance during the course of the sampling season, supervisory staff has a goal of resurveying a random sample of 10 to 20 percent of the sites surveyed in each Monitoring Area.

Data Analysis

Two basic metrics were used to analyze the juvenile coho data: 1) the percentage of pools that contained at least one juvenile coho; and 2) the average density (fish/m²) of juvenile coho. Methods outlined by Stevens (2002) were used to calculate sample variances from which Z-values (Snedecor and Cochran 1980) were obtained to compare means. Analysis of covariance (Neter and Wasserman 1974) was used to compare differences between years in the slope and intercept of the relationship between adults found on spawning surveys and juveniles observed the following summer.

Results

Site Visitation

The locations of candidate sample sites for the summer of 2001 are shown for each Monitoring Area in figures 2-6. In 2001, the most sites were sampled (snorkeled or electrofished) in the North Coast, and the fewest in the Mid-South Coast (Table 1). The South Coast had the highest number of sites that could not be sampled, primarily due to low water at some sites as a result of drought conditions. As in the summer of 2000 (Rodgers 2001), site access denial in 2001 was highest in the Mid-South and South Coast. However, site access denials appear to have been more randomly distributed and less spatially biased in 2001 compared to 2000, especially in the South Coast.

Juvenile Coho Frequency of Occurrence

The percentage of pools at each sample site containing at least one juvenile coho is shown for each of the Monitoring Areas in Figures 7-11. In the summer of 2001, the Mid-Coast had the highest percentage of sites that contained at least one juvenile coho while the North Coast had the lowest. The Mid-Coast had the highest mean percentage of pools per site with juvenile coho, while the North Coast and South Coast had the lowest (Table 2). Table 3 shows the results of comparisons between Monitoring Areas of the mean percent of pools per site that contained juvenile coho where $P \leq 0.2$.

	Sampled		Ν	lot Samp	led	
Monitoring Area	Snorkeled	Electrofished	Could Not Be Sampled		Access Denied	Not Visited
North Coast	36	7	6	2	2	1
Mid-Coast	41	0	5	5	1	2
Mid-South Coast	23	7	8	2	10	0
Umpqua	23	9	11	6	4	2
South Coast	33	0	14	2	7	0

Table 1. Status of sites in coastal Monitoring Areas that were candidates for random juvenile coho surveys, summer 2001.

Table 2. The occurrence of juvenile coho as observed by snorkeling or electrofishing in coastal Monitoring Areas, 2001.

Monitoring Area	Percentage of sites with at least one pool containing coho	Mean percentage (and standard error) of pools per site with coho	Median percentage of pools per site containing coho
North Coast	52	41 (5.0)	14
Mid-Coast	80	62 (5.4)	85
Mid-South Coast	62	53 (6.9)	58
Umpqua	60	44 (6.4)	24
South Coast	58	41 (4.9)	22

Table 3. Comparisons between coastal Monitoring Areas sampled in 2001 of the mean percentage of pools per site that contained juvenile coho. Only those comparisons with a P level ≤ 0.2 are shown.

Comparison	P for difference
Mid-South Coast vs South Coast	0.16
Mid-Coast vs Umpqua	0.01
Mid-South Coast vs North Coast	0.16
North Coast vs Mid-Coast	0.01
Mid-Coast vs South Coast	<0.01

The mean percent of pools per site that contained juvenile coho for each sample year and the percentage of sites with at least one pool containing juvenile coho for each

sample year are shown in Figures 12 and 13, respectively. Table 4 shows the results of tests for differences between the mean percentage of pools per site that contained juvenile coho in 1998 and 2001 (i.e. the same brood cycle). Both the Mid-Coast and South Coast had a higher frequency of occurrence of juvenile coho in 2001 compared to 1998 ($P \le 0.14$)

Table 4. Differences between brood cycles within the same coastal Monitoring Area in the mean percentage of pools per site that contained juvenile coho.

Comparison	P for difference
North Coast 98 vs North Coast 01	0.74
Mid-Coast 98 vs Mid-Coast 01	<0.01
Mid-South Coast 98 vs Mid-South Coast 01	0.81
South Coast 98 vs South Coast 01	0.14

Juvenile Coho Density

The average density of juvenile coho in pools at each sample site is shown for each Monitoring Area in Figures 14-18. In the summer of 2001, the percentage of sites that had juvenile coho densities ≥ 0.7 fish/m² ranged from a high of 35% in the Mid-South Coast to a low of 13% in the Umpqua (Table 5). The mean density of juvenile coho in the Umpqua was lower than in either the Mid-South Coast or Mid-Coast (P ≤ 0.10) (Table 6). The yearly mean density and yearly percentage of sites with an average density ≥ 0.7 fish/m² in each Monitoring Area are shown in Figures 19 and 20. The results of Z-tests for differences in the mean density of juvenile coho observed for the 1998 and 2001 broods (same brood cycle) are shown in Table 7. Increases in juvenile coho rearing densities occurred in the North Coast, Mid-Coast, and South Coast (P < 0.01).

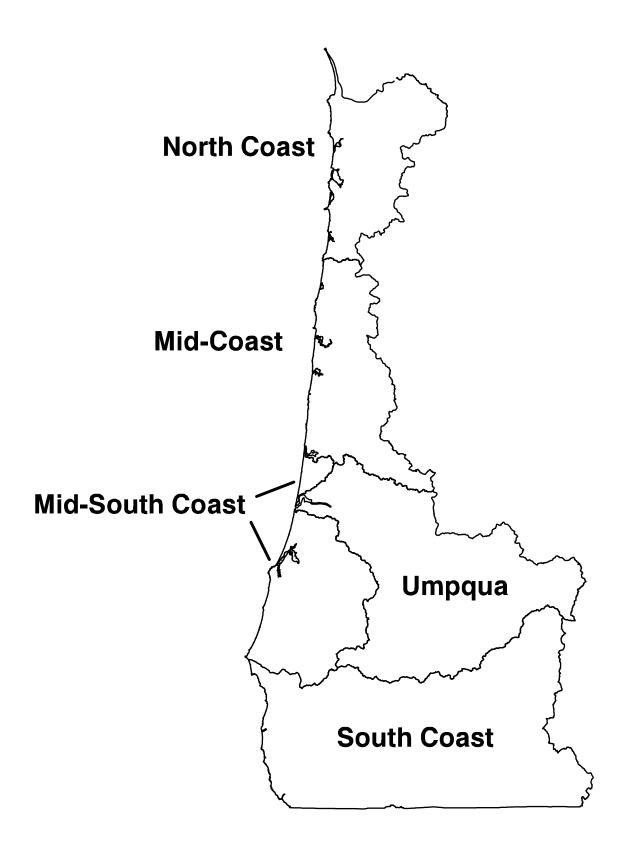
Table 5. Density (fish/m²) of juvenile coho observed by snorkelers in coastal Monitoring Areas in 2001.

Monitoring Area	Percent of sites with an average density <u>></u> 0.7 fish/m ²	Mean density (standard error)	Median density
North Coast	28	0.41(0.08)	0.01
Mid-Coast	32	0.50(0.07)	0.29
Mid-South Coast	35	0.47(0.10)	0.05
Umpqua	13	0.27(0.07)	0.01
South Coast	18	0.38(0.08)	0.01

Table 6. Comparisons between coastal Monitoring Areas sampled in 2001 of the mean density of juvenile coho. Only those comparisons with a P level ≤ 0.2 are shown.

Comparison	P for difference
Umpqua 01 vs Mid-South Coast 01	0.10
Umpqua 01 vs Mid-Coast 01	0.02

Table 7. Differences between brood cycles within the same coastal Monitoring Area in the mean density of juvenile coho.


Comparison	P for difference
North Coast 98 vs North Coast 01	<0.01
Mid-Coast 98 vs Mid-Coast 01	<0.01
Mid-South Coast 98 vs Mid-South Coast 01	0.37
South Coast 98 vs South Coast 01	<0.01

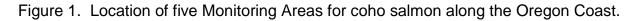

Juvenile Recruitment

Figure 21 shows the relationship between the estimated number of adult coho/mile that spawned in each Monitoring Area from 1998 through 2000 and the estimated number of juvenile coho/mile the following year. Differences in the slopes of the regression lines were the largest between the 1998 and 2000 brood years and the smallest between the 1998 and 1999 brood years (Table 11). Differences in the elevations of the regression lines were largest between the 1998 and 1999 brood years and the 1998 and 2000 brood years. Based on the regression equation for each brood year, at an average adult escapement of 11 fish/mile, spawners in 1998 produced approximately half the number of juveniles (225/mile) compared to spawners in 1999 (525/mile) or 2000 (442/mile).

Table 8. Comparison of variances, slopes, and elevations of regression lines fit to the relationship between adults/mile and juveniles/mile (data are depicted in Figure 21).

Comparison (brood year)	Equality of Variances (Pvalue)		Comparison of Elevations (Pvalue)
1998 & 1999	0.015	0.810	0.003
1999 & 2000	0.193	0.164	0.625
1998 & 2000	0.070	0.019	0.015

SITE	BASIN NAME	SUBBASIN NAME	REACH
_	TRASK RIVER	SOUTH FORK	Boundry Cr
107	NESTUCCA RIVER	MAIN STEM AND BAY	Testament Cr
225	NESTUCCA RIVER	MAIN STEM AND BAY	Clear Cr
249	NESTUCCA RIVER	MAIN STEM AND BAY	Sanders Cr (Smith Cr)
258	NESTUCCA RIVER	THREE RIVERS	Cedar Cr
331	NESTUCCA RIVER	THREE RIVERS	Crazy Cr
400	NESTUCCA RIVER	MAIN STEM AND BAY	Niagara Cr
405	NESTUCCA RIVER	MAIN STEM AND BAY	Pheasant Cr
486	NESTUCCA RIVER	LITTLE NESTUCCA	Austin Cr
-	TRASK RIVER	MAIN STEM	Hoquarten Slough
	TRASK RIVER	MAIN STEM	Green Cr
	NOT IDENTIFIED	NOT IDENTIFIED	
-	TILLAMOOK RIVER	MAIN STEM	Tillamook R
_	SAND LAKE	MAIN STEM	Sand Cr
	TRASK RIVER	MAIN STEM	Mill Cr
	TILLAMOOK RIVER	MAIN STEM	Killam Cr
_	TILLAMOOK RIVER	MAIN STEM	Simmons Cr
	NESTUCCA RIVER	BEAVER CREEK	Bear Cr
	NESTUCCA RIVER	MAIN STEM AND BAY	West Cr
_	NESKOWIN CREEK	MAIN STEM	Sloan Cr
	OCEAN TRIB	MAIN STEM	Rice Cr
	NEHALEM RIVER	ROCK CREEK	Weed Cr
	NEHALEM RIVER	ROCK CREEK	Rock Cr, S Fk
	NECANICUM RIVER	SOUTH FORK	Brandis Cr
_	NECANICUM RIVER	SOUTH FORK	Necanicum R, S Fk
	ROVER CREEK	MAIN STEM	Bergsvik Cr
	ROVER CREEK	MAIN STEM	Little Muddy Cr
_	ROVER CREEK	MAIN STEM	Little Muddy Cr Little Joe Cr
	ROVER CREEK NEHALEM RIVER	MAIN STEM NORTH FORK	Nehalem R, N Fk
	NEHALEM RIVER	NORTH FORK	Rackheap Cr
	MIAMI RIVER	MAIN STEM	Miami R
	KILCHIS RIVER	MAIN STEM	Kilchis R, N Fk
	NEHALEM RIVER	MAIN STEM	Foley Cr
	NOT IDENTIFIED	NOT IDENTIFIED	
	NEHALEM RIVER	MAIN STEM	E Humbug Cr
_	NEHALEM RIVER	MAIN STEM	Beneke Cr
	NEHALEM RIVER	MAIN STEM	Crawford Cr
	NEHALEM RIVER	MAIN STEM	Northrup Cr
	NEHALEM RIVER	MAIN STEM	Unnamed Trib Walker Cr
2265	NEHALEM RIVER	MAIN STEM	Hamilton Cr
	NEHALEM RIVER	MAIN STEM	Ford Cr
_	NEHALEM RIVER	ROCK CREEK	Selder Cr, Trib B
	NEHALEM RIVER	MAIN STEM	Cedar Cr
2506	NEHALEM RIVER	MAIN STEM	Fishhawk Cr
2546	NEHALEM RIVER	MAIN STEM	Coal Cr
2573	NEHALEM RIVER	MAIN STEM	Dell Cr
2651	NEHALEM RIVER	MAIN STEM	Deer Cr
2687	NEHALEM RIVER	MAIN STEM	Oak Ranch Cr
2864	NOT IDENTIFIED	NOT IDENTIFIED	Laughlin Cr
2912	WILSON RIVER	MAIN STEM	Fall Cr
2020	WILSON RIVER	MAIN STEM	Ben Smith Cr
2939	WIEGONTRIVER		
3022	WILSON RIVER	DEVIL'S LAKE FORK	Deo Cr
3022 3079		-	

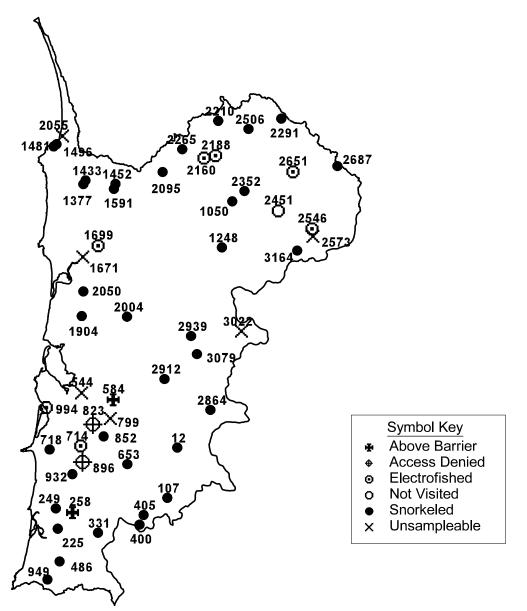


Figure 2. Location and status of candidate sites for juvenile coho sampling in the North Coast, summer 2001 (see Appendix A for geographic coordinates).

SITE	BASIN NAME	SUBBASIN NAME	REACH
34	SIUSLAW RIVER	LAKE CREEK	Elk Cr
73	ALSEA RIVER	FIVE RIVERS	Lobster Cr
96	ALSEA RIVER	MAIN STEM AND BAY	Benner Cr
127	YACHATS RIVER	MAIN STEM	Stump Cr
172	SIUSLAW RIVER	LAKE CREEK	Indian Cr, N Fk, Trib D
194	SIUSLAW RIVER	LAKE CREEK	Indian Cr, N Fk
209	SIUSLAW RIVER	LAKE CREEK	Maria Cr
220	SIUSLAW RIVER	LAKE CREEK	Rogers Cr
274	SIUSLAW RIVER	LAKE CREEK	Fish Cr
292	ALSEA RIVER	FIVE RIVERS	Lobster Cr, E Fk
321		LAKE CREEK	Lake Cr
	ALSEA RIVER	NORTH FORK	Alsea R, N Fk
	ALSEA RIVER	MAIN STEM AND BAY	Narrows Cr
	ALSEA RIVER	NORTH FORK	Crooked Cr
451	ALSEA RIVER	SOUTH FORK	Brown Cr
549		MAIN STEM	Haight Cr
577	SIUSLAW RIVER	MAIN STEM	Wildcat Cr, Trib Zh
601	SIUSLAW RIVER	MAIN STEM	Wildcat Cr
609	SIUSLAW RIVER	MAIN STEM	Clay Cr
669		MAIN STEM	Fawn Cr
749	SIUSLAW RIVER	NORTH FORK	Porter Cr
773	SIUSLAW RIVER	NORTH FORK	Condon Cr
806	BIG CREEK	MAIN STEM & SFK	Fryingpan Cr
826		MAIN STEM	Mill Cr
861		MAIN STEM	Barber Cr
918	SIUSLAW RIVER	MAIN STEM	Bounds Cr
955	SIUSLAW RIVER	LAKE CREEK	Hula Cr
979	SIUSLAW RIVER	MAIN STEM	Hanson Cr
1001	SIUSLAW RIVER	MAIN STEM	Knowles Cr
1026	YAQUINA RIVER	ELK CREEK	Spout Cr
1076		LITTLE ELK CREEK	Oglesby Cr
1086	SILETZ RIVER	ROCK CREEK	Steere Cr
	SILETZ RIVER	NORTH FORK	Boulder Cr
1207	SILETZ RIVER	NORTH FORK	Warnicke Cr
	SILETZ RIVER	MAIN STEM	Mill Cr, N Fk
1307	SILETZ RIVER	MAIN STEM	Dewey Cr
1400	SILETZ RIVER	MAIN STEM	Bear Cr
	DEVIL'S LAKE	MAIN STEM	Rock Cr, Trib A
1463	CUMMINS CR	MAIN STEM	Cummins Cr
1470	ALSEA RIVER	MAIN STEM AND BAY	Darling Cr
	BIG CREEK	MAINSTEM, SFK, DICK'S	
	ALSEA RIVER	DRIFT CREEK	Flynn Cr
1579		ELK CREEK	Deer Cr
1606	YAQUINA RIVER	MAIN STEM AND BAY	Mill Cr
1653	ALSEA RIVER	FIVE RIVERS	Camp Cr
1665	ALSEA RIVER	FIVE RIVERS	Five Rivers
1709	SIUSLAW RIVER	LAKE CREEK	Bear Cr, S Fk
1712		LAKE CREEK	Lake Cr
	ALSEA RIVER	NORTH FORK	Seeley Cr
1797	SIUSLAW RIVER	MAIN STEM	Siuslaw R
1830	SIUSLAW RIVER	MAIN STEM	Siuslaw R
1847		MAIN STEM	Munsel Cr
	BIG CREEK	MAIN STEM & SFK	Big Cr
1888	SIUSLAW RIVER	LAKE CREEK	Indian Cr
1951	SIUSLAW RIVER YAQUINA RIVER	MAIN STEM AND BAY	Depot Cr
1951 2035	SIUSLAW RIVER YAQUINA RIVER ALSEA RIVER		

Figure 3. Location and status of candidate sites for juvenile coho sampling in the Mid-Coast, summer 2001 (see Appendix A for geographic coordinates).

SITE	BASIN NAME	SUBBASIN NAME	REACH
44	COOS RIVER	SOUTH FORK	Little Cow Cr
133	COOS RIVER	SOUTH FORK	Bottom Cr
149	COQUILLE RIVER	MIDDLE FORK	Mcmullen Cr
182	COQUILLE RIVER	SOUTH FORK	Ward Cr
220	COQUILLE RIVER	SOUTH FORK	Rowland Cr
231	COQUILLE RIVER	SOUTH FORK	Baker Cr
279	COQUILLE RIVER	SOUTH FORK	Beaverdam Br
311	COQUILLE RIVER	SOUTH FORK	Dement Cr
326	FOURMILE CR	MAIN STEM	Fourmile Cr
361	COQUILLE RIVER	EAST FORK	Weekly Cr
451	COQUILLE RIVER	NORTH FORK	Middle Cr
	COQUILLE RIVER	NORTH FORK	Coquille R, N Fk
651	COQUILLE RIVER	EAST FORK	Elk Cr
	COQUILLE RIVER	MIDDLE FORK	Big Cr
689	COQUILLE RIVER	NORTH FORK	Johns Cr
740	COQUILLE RIVER	MIDDLE FORK	Rock Cr
757	COQUILLE RIVER	MIDDLE FORK	Little Rock Cr
781	COQUILLE RIVER	SOUTH FORK	Salmon Cr
819	SIXES RIVER	MAIN STEM	Sixes R
858	SIXES RIVER	MAIN STEM	Sixes R
884	FLORAS CREEK	MAIN STEM	Floras Cr
961	TENMILE CREEK	MAIN STEM	Tenmile Cr
1096	TENMILE CREEK	SOUTH TENMILE LAKE	Benson Cr
1175	COOS RIVER	MILLICOMA RIVER	Hendrickson Cr
1200	COOS RIVER	SOUTH FORK	Bessey Cr
1260	COQUILLE RIVER	NORTH FORK	Coquille R, Little N Fk
	COQUILLE RIVER	NORTH FORK	Coquille R, N Fk
	COOS RIVER	SOUTH FORK	Wren Smith Cr
	COOS RIVER	MILLICOMA RIVER	Millicoma R, E Fk
1385	COOS RIVER	MILLICOMA RIVER	Millicoma R, E Fk
	COOS RIVER	MILLICOMA RIVER	Schumacher Cr
	COOS RIVER	MAIN STEM	Catching Cr
1610	COOS RIVER	MAIN STEM	Winchester Cr
1693	COQUILLE RIVER	MAIN STEM AND BAY	Mack Cr
1757	TAHKENITCH CREEK	FIVEMILE CREEK	Fivemile Cr
		FIVEMILE CREEK	Fivemile Cr
1826	SILTCOOS RIVER	MAPLE CREEK	Maple Cr
1858	SILTCOOS RIVER	WOAHINK LAKE	Miller Cr
	COOS RIVER	SOUTH FORK	Williams R
	COQUILLE RIVER	MAIN STEM AND BAY	Fishtrap Cr
	COQUILLE RIVER	NORTH FORK	Coquille R, N Fk
	COQUILLE RIVER	SOUTH FORK	Poverty Gulch
	SIXES RIVER	MAIN STEM	Sixes R
	SIXES RIVER	MAIN STEM	Sixes R
	NOT IDENTIFIED	NOT IDENTIFIED	
	TENMILE CREEK	EEL LAKE	Eel Cr
	COOS RIVER	MILLICOMA RIVER	Hendrickson Cr
	COOS RIVER	MILLICOMA RIVER	Packard Cr
2460	NOT IDENTIFIED	NOT IDENTIFIED	
	COOS RIVER	MAIN STEM	

Figure 4. Location and status of candidate sites for juvenile coho sampling in the Mid-South Coast, summer 2001 (see Appendix A for geographic coordinates).

SITE	BASIN NAME	SUBBASIN NAME	REACH
-	UMPQUA RIVER	ELK CREEK	Elk Cr
	UMPQUA RIVER	ELK CREEK	Bennet Cr
	UMPQUA RIVER	SOUTH UMPQUA	Roberts Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Turkey Cr
915	UMPQUA RIVER	SOUTH UMPQUA	Wood Cr
	UMPQUA RIVER	SOUTH UMPQUA	Whitehorse Cr
	UMPQUA RIVER	SOUTH UMPQUA	Blue Cr
958	UMPQUA RIVER	SOUTH UMPQUA	Clear Cr
970	UMPQUA RIVER	SOUTH UMPQUA	Quines Cr
972	UMPQUA RIVER	SOUTH UMPQUA	Bull Run Cr
988	UMPQUA RIVER	MAIN STEM AND BAY	Wind Cr
1006	UMPQUA RIVER	MAIN STEM AND BAY	Harvey Cr
1026	UMPQUA RIVER	MAIN STEM AND BAY	Scholfield Cr
1034	UMPQUA RIVER	MAIN STEM AND BAY	Dry Cr
1047	UMPQUA RIVER	MAIN STEM AND BAY	Camp Cr
	UMPQUA RIVER	SMITH RIVER	Otter Cr
1069	UMPQUA RIVER	MAIN STEM AND BAY	Oar Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Case Knife Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Wolf Cr
1116	UMPQUA RIVER	MAIN STEM AND BAY	Heddin Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Lutsinger Cr
1151	UMPQUA RIVER	MAIN STEM AND BAY	Lutsinger Cr
1158	UMPQUA RIVER	MAIN STEM AND BAY	Camp Cr
1169	UMPQUA RIVER	MAIN STEM AND BAY	Mcgee Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Mehl Cr
	UMPQUA RIVER	SMITH RIVER	Spencer Cr, W Fk, Trib A
	UMPQUA RIVER	SMITH RIVER	S Sister Cr
	UMPQUA RIVER	SMITH RIVER	Lower Johnson Cr
	UMPQUA RIVER	SMITH RIVER	Blackwell Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Wells Cr
	UMPQUA RIVER	MAIN STEM AND BAY	Weatherly Cr
	UMPQUA RIVER	NOT IDENTIFIED	Umpqua River
	UMPQUA RIVER	MAIN STEM AND BAY CALAPOOYA CREEK	Umpqua R Coon Cr
		SOUTH UMPQUA	Mcnabb Cr
	UMPQUA RIVER	SOUTH UMPQUA	Tenmile Cr
	UMPQUA RIVER	SOUTH UMPQUA	Tenmile Cr
	UMPQUA RIVER	SOUTH UMPQUA	Bear Cr
	UMPQUA RIVER	SOUTH UMPQUA	Falcon Cr
	UMPQUA RIVER	SOUTH UMPQUA	Stampede Cr
	UMPQUA RIVER	SOUTH UMPQUA	Beaver Cr
	UMPQUA RIVER	SOUTH UMPQUA	Burnt Cr
	UMPQUA RIVER	SOUTH UMPQUA	Boulder Cr
	UMPQUA RIVER	SOUTH UMPQUA	Squaw Cr
	UMPQUA RIVER	SOUTH UMPQUA	Crooked Cr
	UMPQUA RIVER	SOUTH UMPQUA	Black Canyon Cr
	UMPQUA RIVER	NORTH UMPQUA	Limpy Cr
	UMPQUA RIVER	NOT IDENTIFIED	Part Cr
	UMPQUA RIVER	NORTH UMPQUA	N Umpqua R
	UMPQUA RIVER	NORTH UMPQUA	Cavitt Cr
	UMPQUA RIVER	SOUTH UMPQUA	Shively Cr, E Fk
	UMPQUA RIVER	SOUTH UMPQUA	Salt Cr #2
2587	UMPQUA RIVER	SOUTH UMPQUA	N Myrtle Cr
2626	UMPQUA RIVER	NOT IDENTIFIED	
	UMPQUA RIVER	MAIN STEM AND BAY	Providence Cr
2719	UMPQUA RIVER	NOT IDENTIFIED	Indian Cr
-			

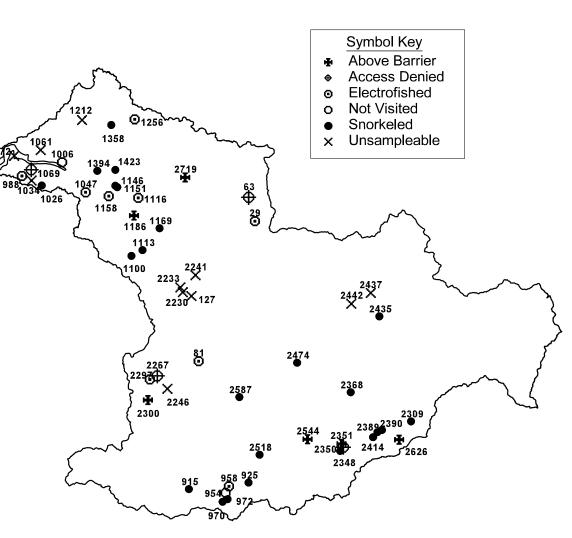


Figure 5. Location and status of candidate sites for juvenile coho sampling in the Umpqua, summer 2001 (see Appendix A for geographic coordinates).

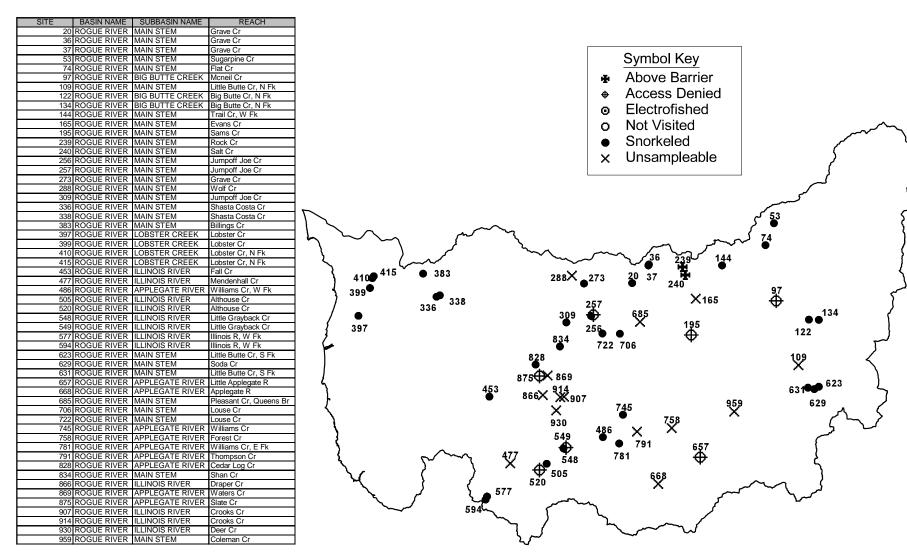


Figure 6. Location and status of candidate sites for juvenile coho sampling in the South Coast, summer 2001 (see Appendix A for geographic coordinates).

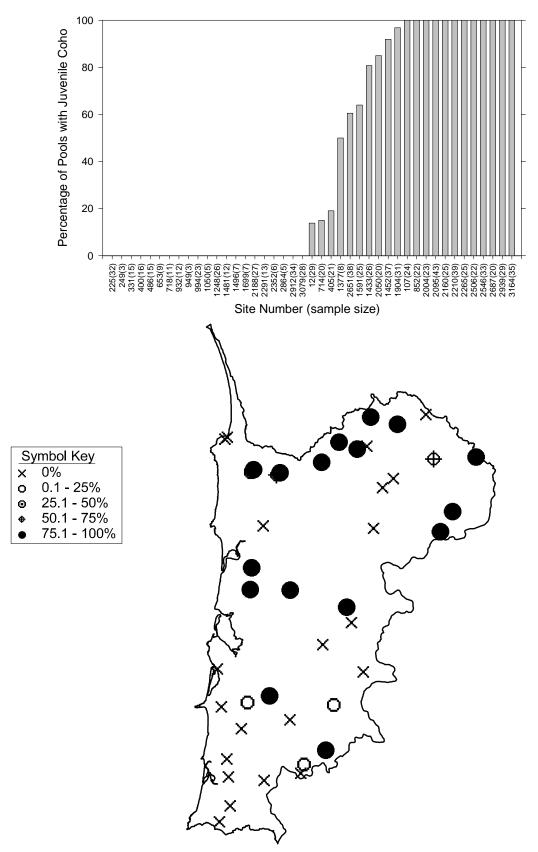


Figure 7. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the North Coast (see Appendix A for site data).

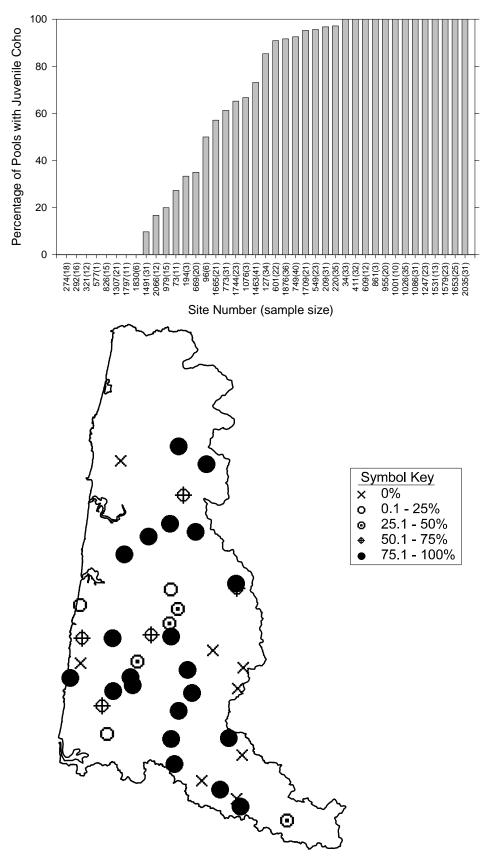


Figure 8. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Mid-Coast (see Appendix A for site data).

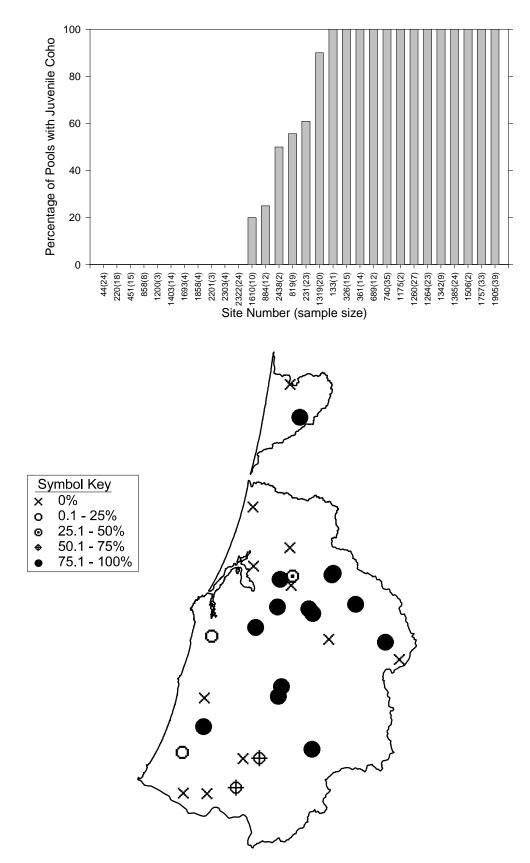


Figure 9. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Mid-South Coast (see Appendix A for site data).

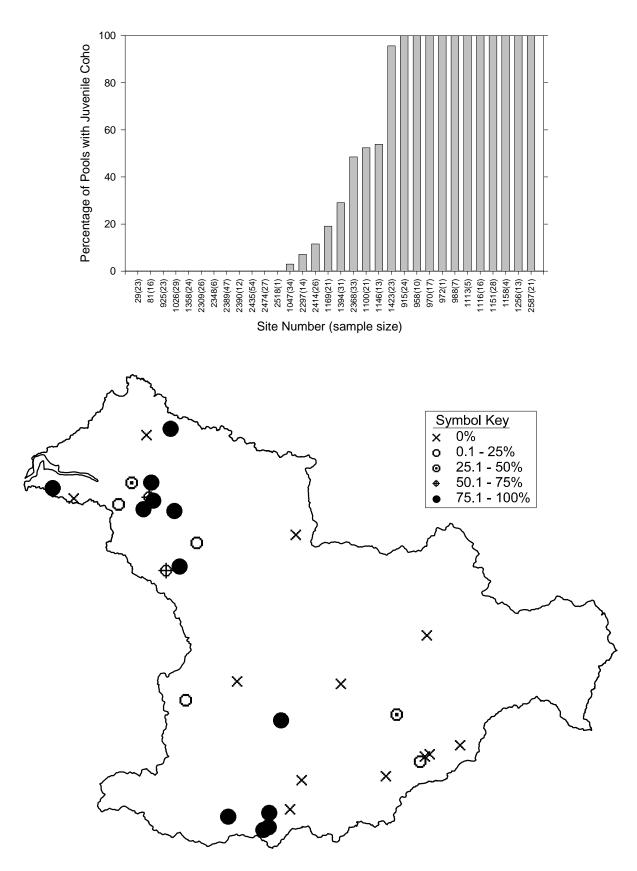


Figure 10. Percentage of pools that contained juvenile coho at each site snorkeled or electrofished in the summer of 2001 in the Umpqua (see Appendix A for site data).

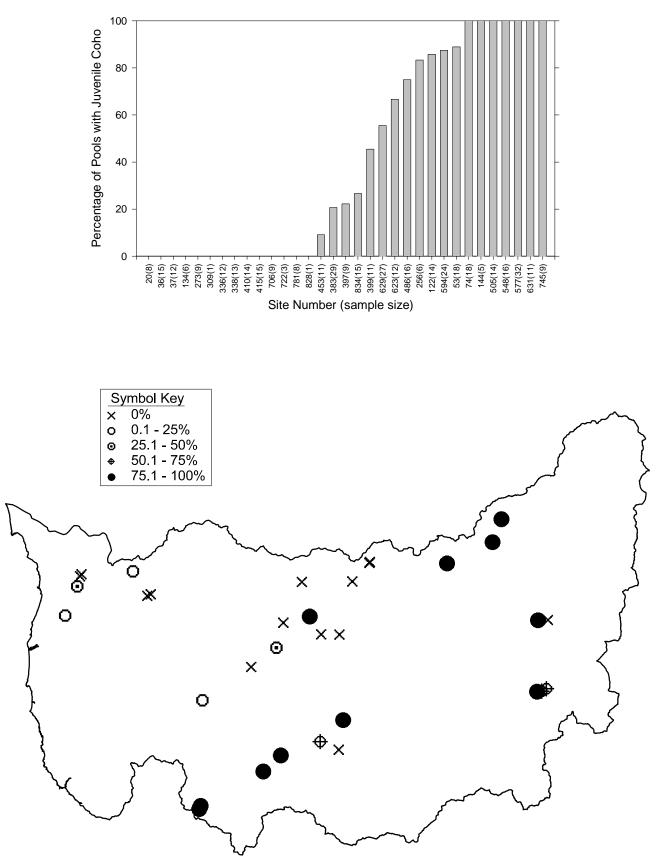


Figure 11. Percentage of pools that contained juvenile coho at each site snorkeled in the summer of 2001 in the South Coast (see Appendix A for site data).

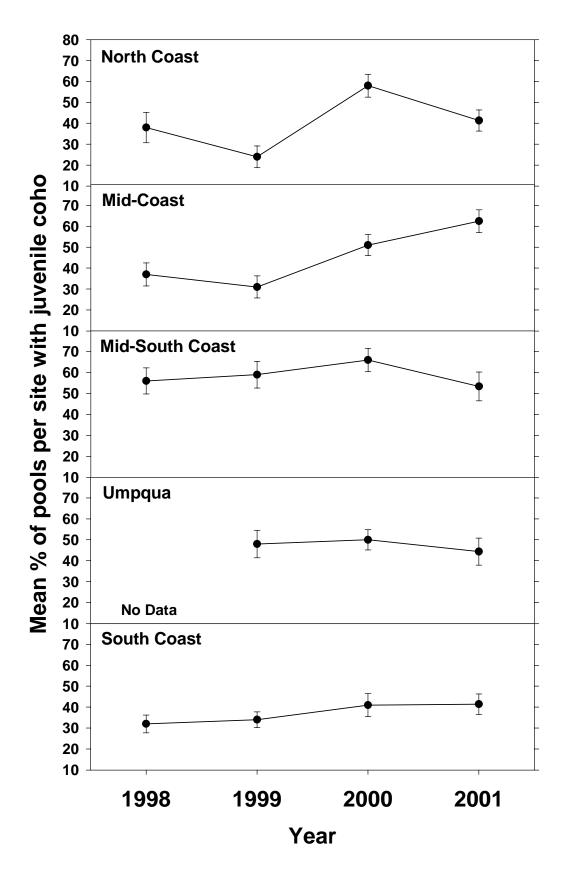


Figure 12. Percentage (mean and standard error) of pools per site that contained juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998.

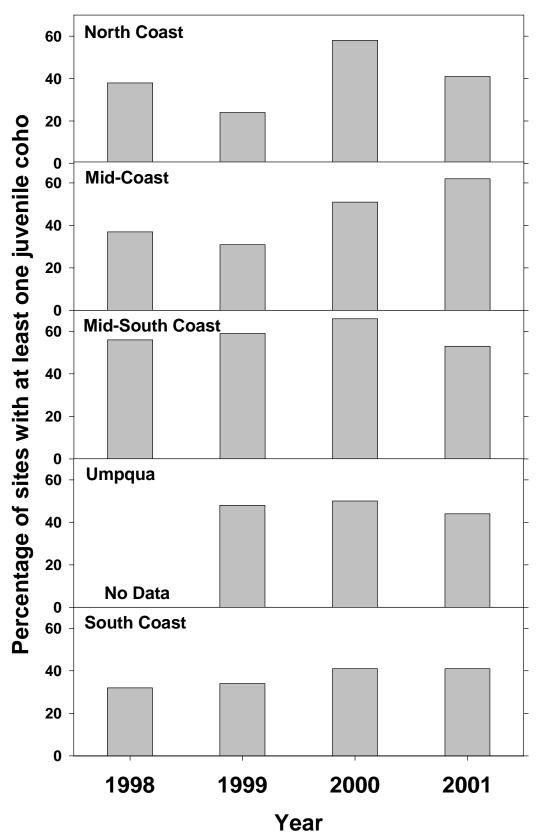


Figure 13. Percentage of sites with at least one pool containing juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998.

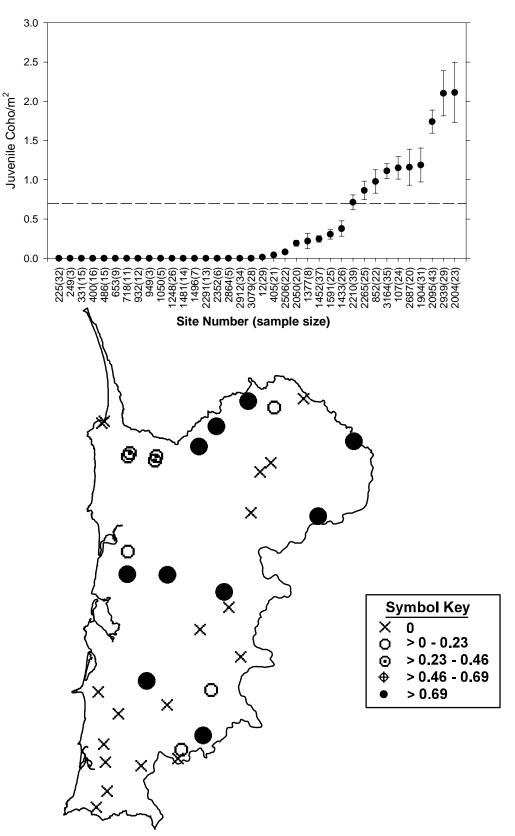


Figure 14. Density (mean and standard error) of juvenile coho at North Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m² in graph indicates approximate full seeding level (see Rodgers 2000).

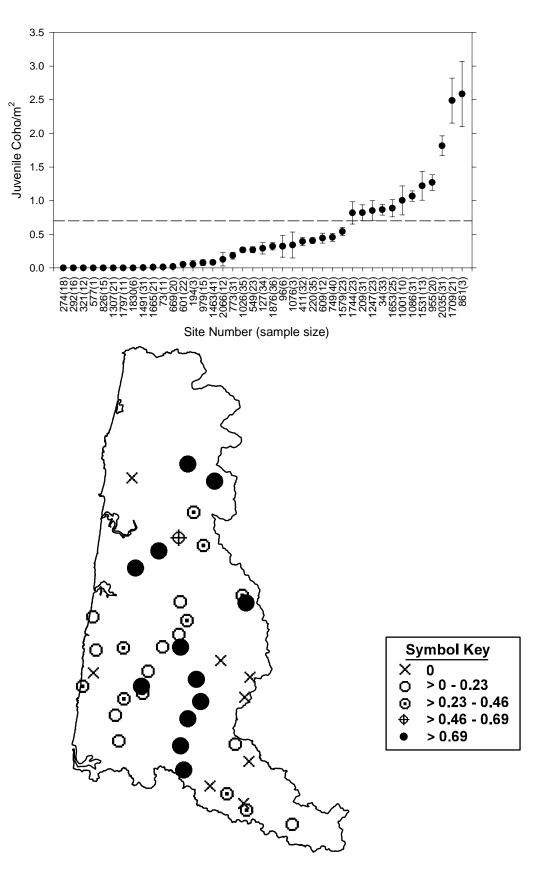


Figure 15. Density (mean and standard error) of juvenile coho at Mid-Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m² in graph indicates approximate full seeding level (see Rodgers 2000).

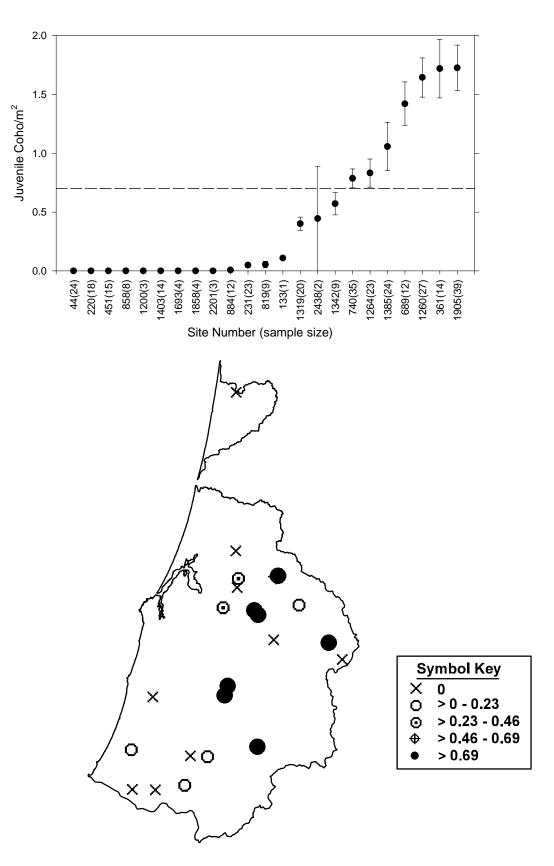


Figure 16. Density (mean and standard error) of juvenile coho at Mid-South Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m² in graph indicates approximate full seeding level (see Rodgers 2000).

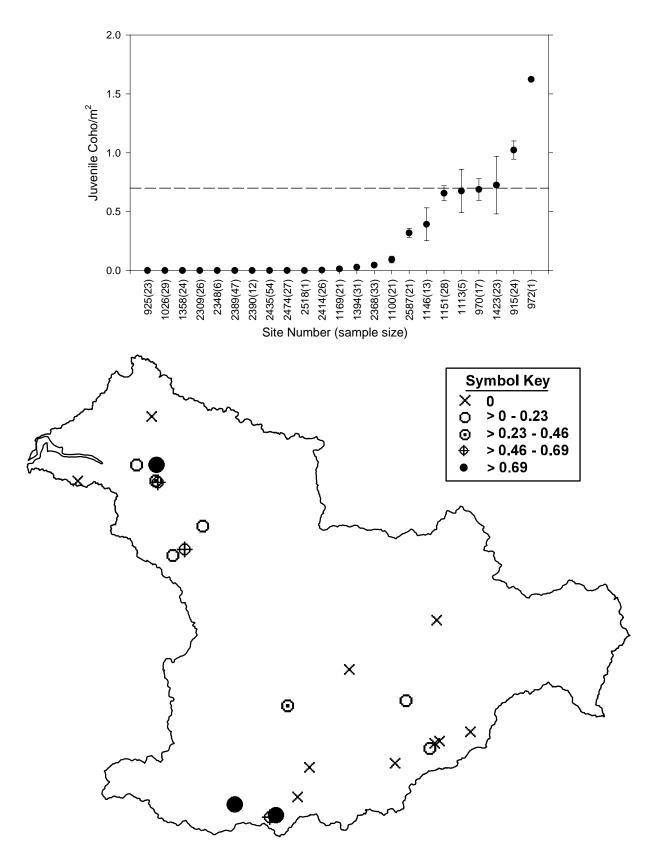


Figure 17. Density (mean and standard error) of juvenile coho salmon at Umpqua sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m² in graph indicates approximate full seeding level (see Rodgers 2000).

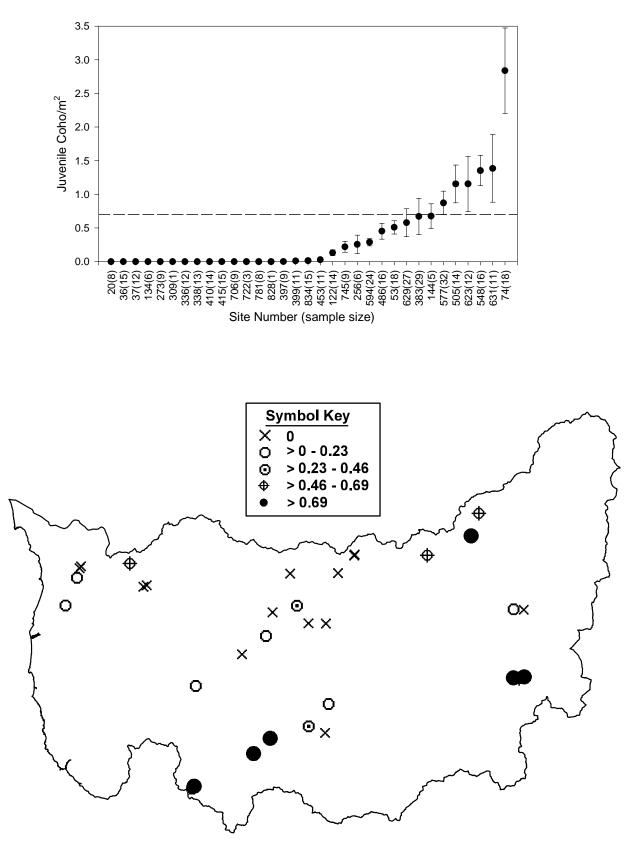
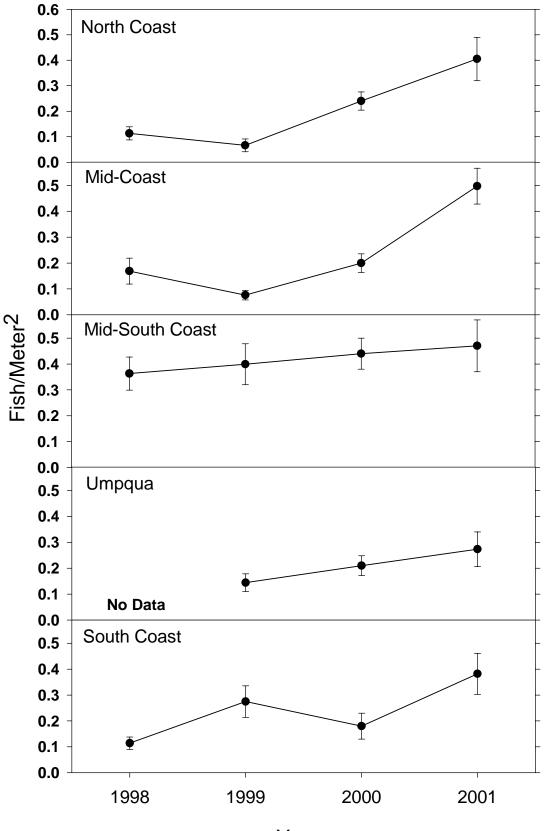



Figure 18. Density (mean and standard error) of juvenile coho salmon at South Coast sites in 2001 (see Appendix A for site data). Dashed horizontal line at 0.7 fish/m² in graph indicates approximate full seeding level (see Rodgers 2000).

Year

Figure 19. Density (mean and standard error) of juvenile coho in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998.

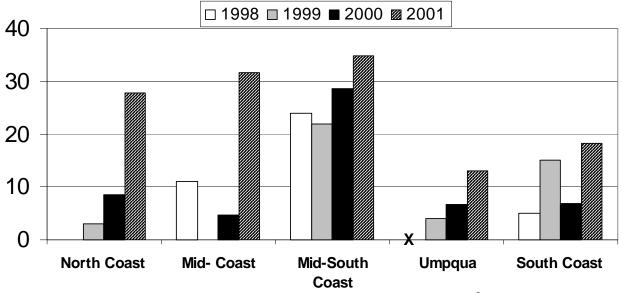


Figure 20. Percentage of sites with an average density ≥ 0.7 fish/m² in each coastal Monitoring Area, 1998-2001. No sampling was conducted in the Umpqua in 1998.

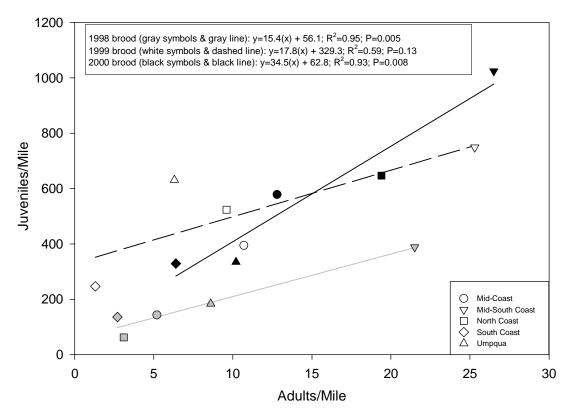


Figure 21. Relationship between number of adults/mile in each coastal Monitoring Area and the number of juveniles/mile the following year, 1998-2000.

Chapter 2: Smith River Steelhead and Coho Monitoring Verification Study: Results of Juvenile Salmonid Sampling, Summer 2001

Introduction

Monitoring the status of salmonids in Oregon coastal streams is an important component of the Oregon Department of Fish and Wildlife's (ODFW's) contribution to the Oregon Plan for Salmon and Watersheds. Since 1998, ODFW has had a program to monitor adult and juvenile coho in Oregon coastal streams (see Chapter 1 of this report). Beginning in 2002, ODFW is planning to expand its monitoring program to include steelhead.

The monitoring plans for both coho and steelhead rely on the Environmental Mapping and Assessment Protocol (EMAP) (Stevens and Olsen 1999) random site selection process to select survey sites. Although this monitoring is being implemented coastwide, no information is available at a large basin scale on the relationship of data collected to the actual population status of the fish being monitored. The goal of the Smith River Steelhead and Coho Monitoring Verification Study is to provide this information.

The purpose of this report is to summarize data collected on juvenile salmonids in Smith River during the summer of 2001. This summary is divided into three parts: 1) the results of electrofishing in "wadeable" stream reaches ($\leq 60 \text{ km}^2$ basin area); 2) the results of basin-wide snorkel surveys; and 3) comparison of electrofishing and snorkel surveys.

Study Area

A map of the study area is shown in Figure 22. The study area begins above a waterfall approximately 48 km from the confluence of Smith River with the Umpqua River. The basin area above the falls is approximately 525 km² with approximately 463 km of mainstem and tributary streams at the 1:100,000 map scale.

The climate is Pacific Maritime with portions of the basin receiving up to 250 cm of rain annually, the majority of which falls in November through February. Red alder (*Alnus rubra*) with an understory of salal (*Gaultheria shallon*), sword fern (*Polystichum munitum*), and vine maple (*Acer circinatum*) dominate riparian vegetation.

Methods

Electrofishing

Sites electrofished for juvenile salmonids are restricted to wadeable sized streams (< 60 km² basin area) that occur on a 1:100,000 digital map within the presumed rearing distribution of steelhead above Smith River Falls. The rearing distribution of juvenile steelhead was determined by combining three GIS databases: 1) ODFW's winter steelhead distribution database (Bowers, 2000); 2) ODFW's coho distribution database (Bowers, 2000); 2) ODFW's coho distribution database (Bowers, 2000); and 3) ODFW Salmonid Inventory Project's coho salmon distribution database (Steve Jacobs - ODFW, personal communication). Coho distribution database there are

a few instances were coho salmon were shown to have a farther upstream distribution than steelhead and I believe that steelhead should be able to access all areas accessible to coho. Two different coho distribution databases were used because there are slight differences between them, and there is no reason to assume that one database is more accurate than the other.

Once the sampling universe was identified, Environmental Monitoring and Assessment Program (EMAP) protocols (Diaz-Ramos et al. 1996) were used to randomly select 30-36 sites per year. To track individual brood years, a four-year rotating panel design (i.e. revisiting sites every four years) is used since the majority of Oregon coastal steelhead are four years old when they return to spawn.

The EMAP site selection process provides the geographic coordinates of each of the candidate sample sites. These points are printed onto topographic maps and loaded into a handheld Geographic Positioning System (GPS). The topo maps are then used to navigate to the approximate location of the sample point, while the GPS is used to find the precise location of the sample point.

Sampling begins at the sample point, and continues upstream on a habitat unit by habitat unit basis until a length of stream equal to approximately 20 active channel widths is sampled. Side channels entering the survey are not sampled. Independent population estimates are made of young of the year trout (< 90 mm fork length), juvenile steelhead \geq 90 mm, cutthroat \geq 90 mm, and juvenile coho. Block nets are used at the tail and head of all fast water and pool units so that estimates can be obtained for each habitat unit.

A pass-removal estimate (Armour, et al. 1983) using a minimum of two passes is conducted in all units. Decisions on whether additional passes were necessary are based on the number of fish captured and the reduction in catch from one pass to the next. When 10 or fewer fish are caught on a pass, the next pass needs to have a 50% reduction or another pass is made. When more than 10 fish are captured, the next pass needs to be reduced by 67%. These rules apply independently to all species/size classes. In complex pools, fish captured during the pass-removal estimates are given a small notch in their upper caudal fin and released for a mark-recapture estimate (Armour, et al 1983). Marked fish are distributed throughout the pool so that they can mix with the remaining unmarked fish. Marked fish are given a minimum of one hour to recover in the pool before recapture efforts begin. Recapture efforts continued until a minimum of 50% of the released marked fish are recovered.

Fish lengths are measured to the nearest millimeter. All captured trout are measured, as are 50 coho from each site. A species identification is made for all measured trout regardless of size, with the category "unknown trout" used for smaller trout that cannot be field identified to species.

Habitat type is classified using ODFW's Aquatic Inventory definitions for pools, glides, riffle/rapids, and dry stream channels (Moore et al. 1997). We measure the length (to nearest 0.1m) for all habitat units as well as the average width (to nearest 0.1m) and maximum depth (to nearest cm) of all wetted units. For all wetted habitat units, we also estimate substrate composition using the following categories: 1) silt and fine organic matter; 2) sand; 3) gravel (2-64mm); 4) cobble (64-256mm); 5) boulders (>256mm); and 6) bedrock, and counted the number of boulders \geq one meter in diameter that are in or touching the wetted channel.

Snorkel Surveys

Snorkel surveys were attempted at electrofishing sites prior to electrofishing. In addition, snorkel surveys were conducted at 16 randomly selected sites in the larger, non-wadeable (>60 km² basin area) mainstem portions of Smith River above Smith River Falls.

Snorkel surveys began at the EMAP sample point and ended 1,000 meters upstream. A two-person snorkel crew conducted surveys at the wadeable sites. Up to 4 people conducted snorkel surveys in the non-wadeable reaches. In wadeable reaches, crewmembers either alternated the pools they snorkeled or one crewmember snorkeled the entire reach. In the non-wadeable reaches, crewmembers snorkeled side-by-side and summed their individual counts. To reduce problems associated with snorkeling in shallow or fast water habitat, only pools $\geq 6 \text{ m}^2$ in surface area and $\geq 40 \text{ cm}$ deep were snorkeled. We measured the maximum pool depth and estimated the length and average width of all snorkeled pools.

In all wadeable and most non-wadeable reaches, snorkel methodology involved a single upstream pass through each pool. In some of the larger, non-wadeable reaches, divers surveyed downstream. Counts of the number of juvenile coho, cutthroat, steelhead, unknown trout, chinook, blackside dace, and redside shiner were recorded for each pool. Trout < 90 mm were not counted. After snorkeling, the underwater visibility of each pool was ranked on a scale of 0 to 3 where: 0 = not snorkelable due to an extremely high amount of hiding cover or zero water visibility; 1 = high amount of hiding cover or zero water visibility; 1 = high amount of hiding cover or moderate water clarity neither of which were thought to impede accurate fish counts; and 3 = little hiding cover and good water clarity.

Electrofishing Data Analysis

Length frequency histograms were generated for juvenile coho, cutthroat \geq 90 mm, steelhead \geq 90 mm, and trout < 90 mm. For trout 60-89 mm, the proportion of fish identified as cutthroat, steelhead, and unknown was plotted for each site. The percentage of sites with at least one fish was calculated for each of the four species/size classes. The total population of each species/size class present at a sample site was determined by summing the individual species/size class population estimates for all the habitat units sampled. This total estimated population was then divided by the sum of the lengths of all habitat units in the survey (both wet and dry) to obtain the number of fish per meter of stream channel. An estimate of the total population of fish in the wadeable streams above Smith River Falls was calculated by multiplying the average number of fish/meter for all electrofished sites by the total length of stream channels in the sampling universe (338.4 km). The 95% confidence interval around each species/size class population estimate was determined using the statistical analysis outlined by Stevens (2002).

Snorkel Survey Data Analysis

Only pools with a visibility rank of two or three were used in data analysis. The proportion of trout \geq 90 mm estimated by electrofishing that were cutthroat and steelhead was used to reclassify unknown trout \geq 90 mm observed by divers. The reclassified fish

were then added to the observed number of \geq 90 mm cutthroat and steelhead prior to calculating metrics for the diver count data.

The percentage of snorkel sites and the percentage of pools at each site with at least one fish was calculated for juvenile coho, \geq 90 mm steelhead, and \geq 90 mm cutthroat. Fractions resulting from the reclassification of unknown trout were rounded to the nearest whole number.

For each snorkel site, the number of fish/m² of pool habitat was calculated for each of the three species/size classes by averaging the density estimates for each pool at that site. For this analysis, fractions resulting from the reclassification of unknown trout were not rounded to the nearest whole number. A basin-wide density for each of the three species/size classes was obtained by averaging the individual site densities. The 95% confidence interval around each species/size class population estimate was determined using the statistical analysis outlined by Stevens (2002).

Electrofishing and Snorkel Survey Comparisons

Ultimately the two survey methods will be compared against trends in the actual population of adult steelhead and coho returning to Smith River. It is, however, too early in the project for such comparisons since two years of data do not allow for trend analysis. Comparisons can be made, however, between the yearly results of the two juvenile monitoring methods. To do this, only sites surveyed by both survey types were used. The same metrics used to analyze the larger snorkel site dataset were used to compare electrofishing and snorkel surveys.

Results

Electrofishing Surveys

A total of 32 sites were visited for electrofishing surveys in the summer of 2001 (Figure 23). The physical characteristics of the reaches electrofished in Smith River during the summer of 2001 are shown in Figures 24 - 28. A total of 2,958 meters of stream channel were sampled of which 243 meters were dry. Four sites were completely dry, 14 sites had greater than 50% pool habitat by length, and 11 sites had greater than 50% riffle/rapid habitat by length. Average wetted channel width at the 28 watered sites ranged from 0.7 m to 12.5 m. Two sites had maximum water depths \geq 100 cm. Of the wetted sites, bedrock substrate dominated 4 sites, silt/sand 8 sites, and gravel/cobble/boulder 16 sites.

Figures 29 - 32 show the spatial pattern of abundance of juvenile salmonids in Smith River as determined by electrofishing during the summer of 2001. Trout < 90 mm and cutthroat \geq 90 mm were the most widespread, occurring at 69% and 72% of the sites respectively. Juvenile coho were found at 50% of the sites. Steelhead \geq 90 mm were the least widespread, occurring at only 38% of the sites. These results are similar to those obtained in the summer of 2000 (Rodgers 2001). Overall, juvenile coho were the most abundant, followed in order by trout < 90 mm, cutthroat \geq 90 mm, and steelhead \geq 90 mm (Table 9). Cutthroat represented 56.7% of and steelhead 43.3% of the trout \geq 90 mm. Table 9. Population estimates of juvenile steelhead \geq 90 mm, juvenile coho, trout < 90 mm, and cutthroat trout \geq 90 mm in the wadeable stream reaches above Smith River Falls based on data obtained by electrofishing.

Species	≥ 90 mm Steelhead	Coho	< 90 mmTrout	<u>></u> 90 mm Cutthroat
Population Estimate	12,016	317,831	76,685	26,275
95% Confidence Interval	6,316	142117	29516	8075
Confidence Interval % of				
Estimate	53	45	38	31

Figure 33 compares the electrofishing population estimates for each species/size class obtained in 2000 and 2001. Juvenile coho increased (P = 0.10) and trout < 90 mm decreased (P = 0.08), while \geq 90mm steelhead and cutthroat did not change in abundance from 2000 to 2001 (P > 0.20).

Length frequency histograms obtained by electrofishing for each species are shown in Figures 34 - 37. Juvenile coho averaged 60 mm, juvenile steelhead \geq 90 mm averaged 115 mm, cutthroat \geq 90 mm averaged 131 mm, and trout < 90 mm averaged 57 mm in fork length. For trout 60-89 mm, 82% were identified as steelhead, 13% as cutthroat, and 5% as unknown. The spatial pattern of the 60-89 mm trout speciation is shown in Figure 38.

Snorkel Surveys

The snorkel crew visited fifty sites during the summer of 2001. Of these 50 sites, 10 had no pools meeting the minimum size and/or depth criteria, two sites had poor water clarity that made snorkeling impossible, and 38 were snorkeled (Figure 39). Of the 38 sites snorkeled, 21 were in common with electrofishing sites, one was an electrofishing candidate site not visited by the electrofishing crew, and 16 were in larger stream reaches outside the "wadeable" stream sampling universe for electrofishing surveys.

Of trout \geq 90 mm that were classified by divers as either cutthroat or steelhead, 58.7% were identified as cutthroat and 41.3% as steelhead, similar to the proportions determined by electrofishing.

Divers observed the highest density of all three species in the wadeable stream reaches (Table 10). For cutthroat and steelhead \geq 90 mm, the percentage of sites with at least one fish was highest in the wadeable stream reaches. Almost twice the percentage of sites in wadeable stream reaches had juvenile steelhead compared to non-wadeable reaches. Juvenile coho, however, were found more frequently in non-wadeable stream reaches, probably due to the fact that some wadeable stream reaches were inaccessible to adult coho. Figures 40 – 42 show the frequency of occurrence of fish observed by divers at each snorkeled site.

Table 10. The average fish density and percentage of sites with at least one fish in pools snorkeled at wadeable and non-wadeable sites in Smith River, summer 2001.

		All snorkel	sites		Snorkel site adeable str		Snorkel sites in non-wadeable streams				
Species	Coho	≥ 90 mm Cutthroat	≥ 90 mm Steelhead	Coho	≥ 90 mm Cutthroat	≥ 90 mm Steelhead	Coho	≥ 90 mm Cutthroat	≥ 90 mm Steelhead		
Fish/m ²	0.192	0.030	0.012	0.300	0.051	0.021	0.044	0.001	<0.001		
95% CI	0.005	<0.001	<0.001	0.014	<0.001	<0.001	<0.001	<0.001	<0.001		
% of sites with at least one											
fish	84	84	53	77	91	68	94	75	31		

Electrofishing and Snorkel Survey Comparisons

For sites where both snorkel and electrofishing surveys were conducted, divers observed 43% of the coho density and 67% of the cutthroat density estimated by electrofishing. Electrofishing density estimates for steelhead, however, were 78% of that observed by snorkeling. For all three species, snorkel surveys observed at least one fish at more sites than electrofishing surveys (Table 11).

Three factors probably contribute to differences between snorkel surveys and electrofishing surveys: 1) undercounting by divers of the actual number of fish present; 2) differences in abundance in the 1,000 meters of stream at each site surveyed by divers and the 20 – 299 meter stream reaches surveyed by electrofishing; and 3) differences in the size of pools sampled by snorkeling and electrofishing. Differences between the two methods do not, however, mean that one is better at monitoring the status of salmonids in Smith River. The question of how well the two methods of monitoring juvenile abundance track with trends in the actual abundance of salmonids as determined by adult population estimates can only be answered with additional years of data necessary for trend analysis.

Table 11. The average density and number of sites with at least one coho, cutthroat, or steelhead as determined by snorkel and electrofishing surveys at 21 sites sampled by both methods in Smith River, summer 2001.

Method		Snorke	1	Electrofish					
Species/size class	Coho	<u>></u> 90 mm Cutthroat	<u>≥</u> 90 mm Steelhead	Coho	<u>></u> 90 mm Cutthroat	<u>≥</u> 90 mm Steelhead			
Average fish/m ²	0.276	0.051	0.021	0.636	0.077	0.017			
95% Confidence Interval	0.013	<0.001	<0.001	0.072	0.001	<0.001			
Number of sites with at least one fish	16	19	15	15	16	12			
% of sites with at least one fish	76	90	71	71	76	57			

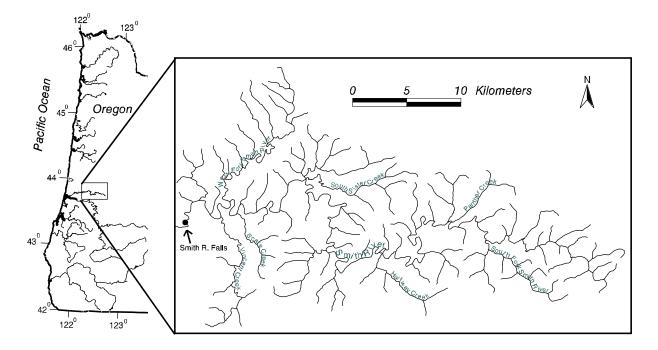


Figure 22. Location of Smith River study area.

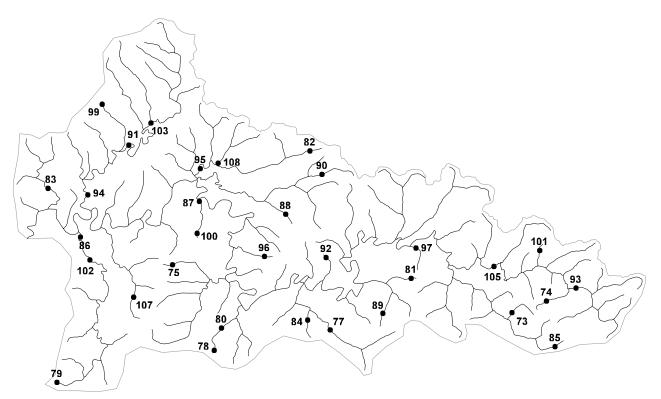


Figure 23. Location of sites electrofished for juvenile salmonid abundance in Smith River, summer 2001. The numbers above the sample points are the site numbers for referencing data in Appendix B.

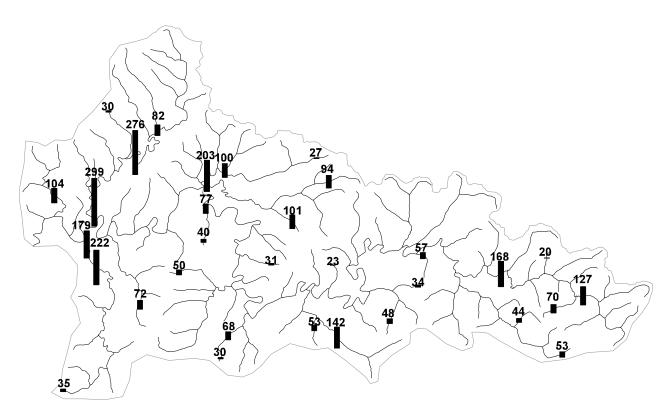


Figure 24. Length of sites sampled by electrofishing in Smith River, summer 2001. Bars indicate the length of the site relative to other sites. The numbers above each bar is the length of the site (in meters).

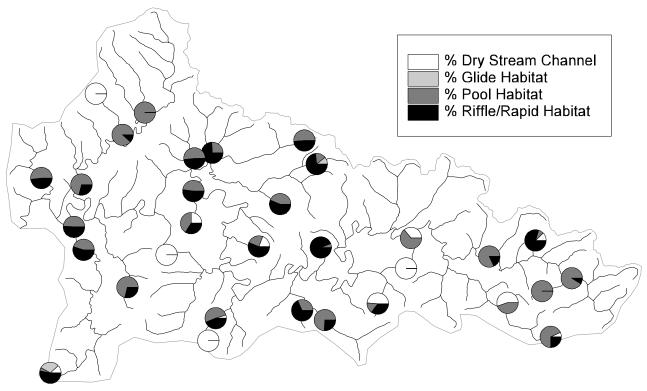


Figure 25. Percentage of the length of each site electrofished in Smith River during the summer of 2001 that was dry stream channel, glide, pool, or riffle/rapid habitat.

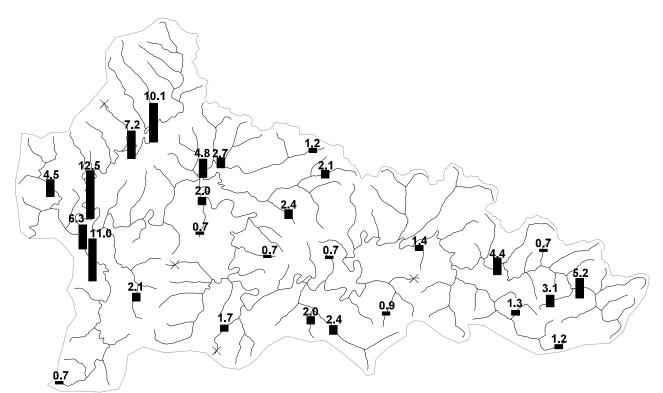


Figure 26. Average wetted width of sites electrofished in Smith River, summer 2001. Bars indicate the width of the site relative to other sites. Sites that were completely dry are indicated with an "X". The number above each bar is the average width of the site (in meters).

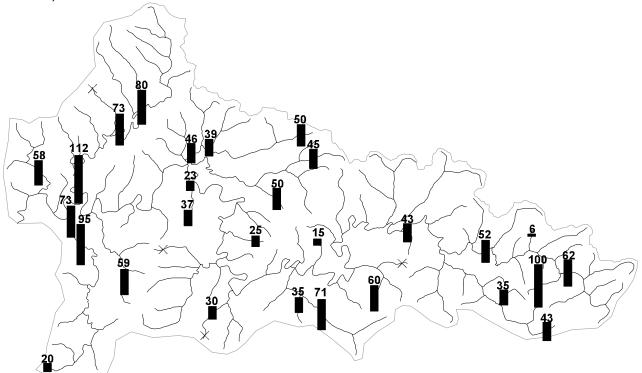


Figure 27. Maximum water depth of sites electrofished in Smith River, summer 2001. Bars indicate the maximum depth of the site relative to other sites. Sites that were completely dry are indicated with an "X". The number above each bar is the maximum depth of the site (in centimeters).

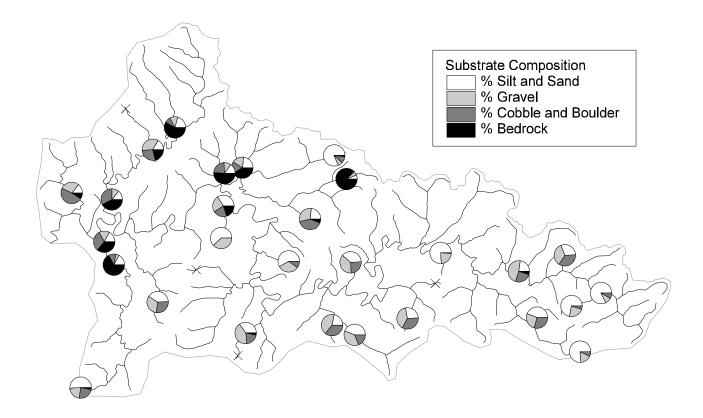


Figure 28. Substrate composition of wetted stream channels at sites electrofished in Smith River, summer 2001. Sites that were completely dry are indicated with an "X".

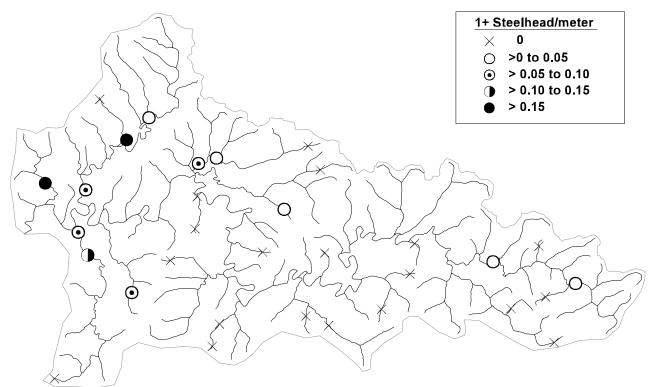


Figure 29. Number of juvenile steelhead (\geq 90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001.

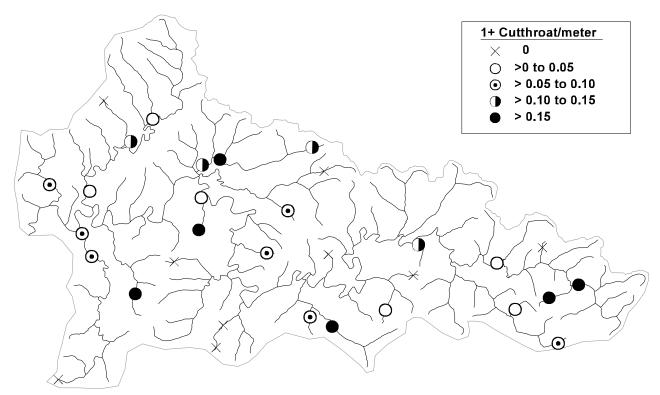


Figure 30. Number of cutthroat trout (>90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001.

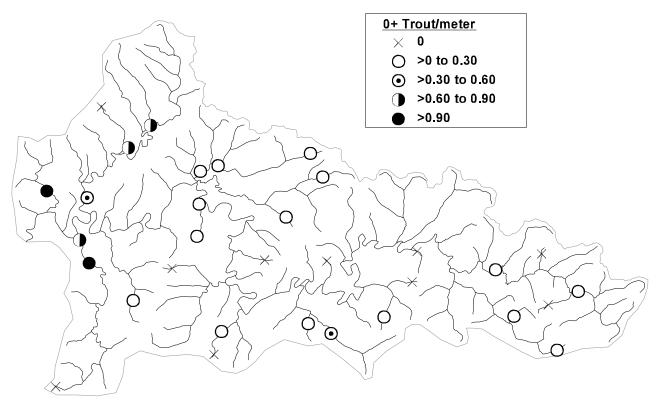


Figure 31. Number of 0+ trout (<90mm fork length) per meter of stream as determined by electrofishing in Smith River, summer 2001.

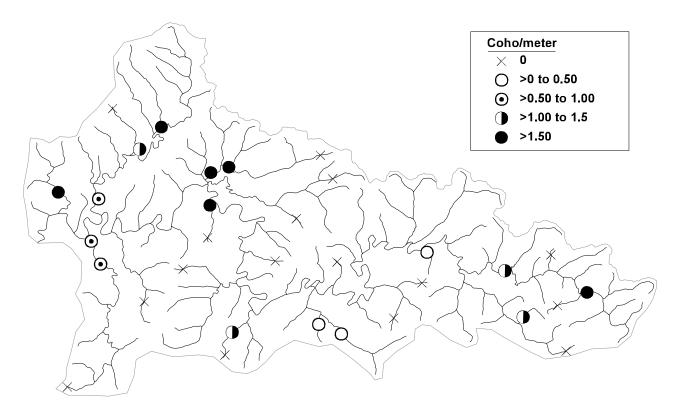


Figure 32. Number of juvenile coho per meter of stream as determined by electrofishing in Smith River, summer 2001.

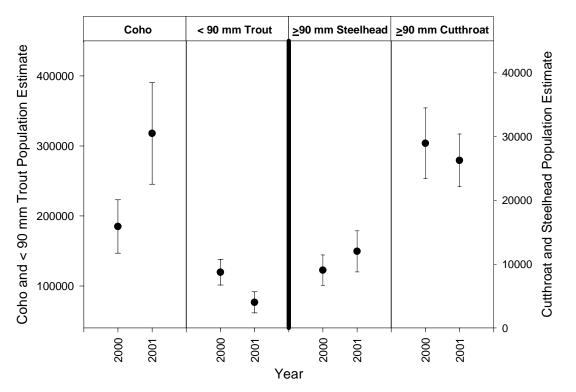


Figure 33. Estimated population (and standard error bars around estimate) of juvenile salmonids as based on electrofishing in Smith River tributary streams, 2000 and 2001.

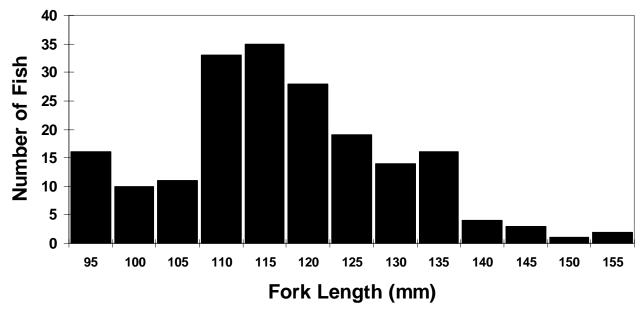


Figure 34. Length frequency (in 5 mm increments) of steelhead \geq 90mm at sites electrofished in Smith River, summer 2001.

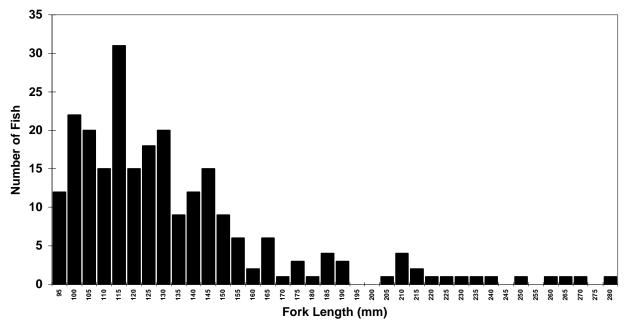


Figure 35. Length frequency (in 5 mm increments) of cutthroat \geq 90mm at sites electrofished in Smith River, summer 2001.

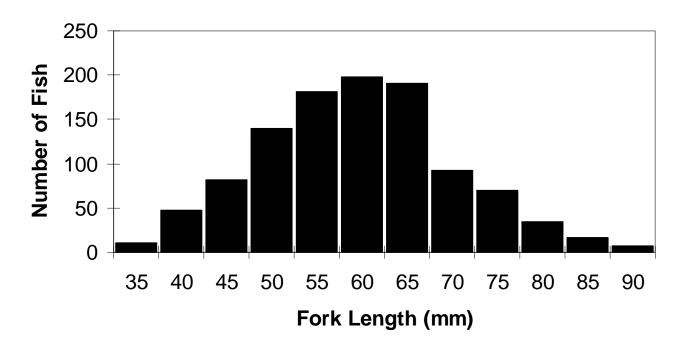


Figure 36. Length frequency (in 5 mm increments) of trout < 90 mm at sites electrofished in Smith River, summer 2001.

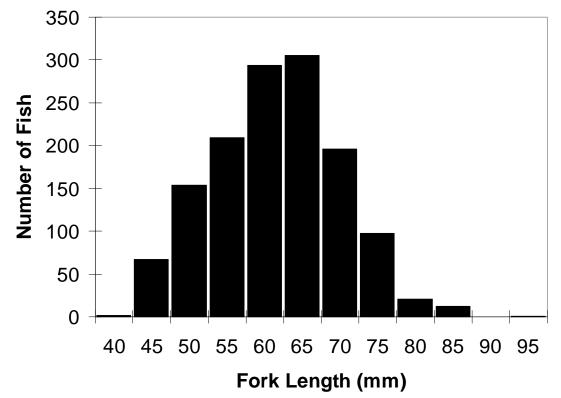


Figure 37. Length frequency (in 5 mm increments) of juvenile coho at sites electrofished in Smith River, summer 2001.

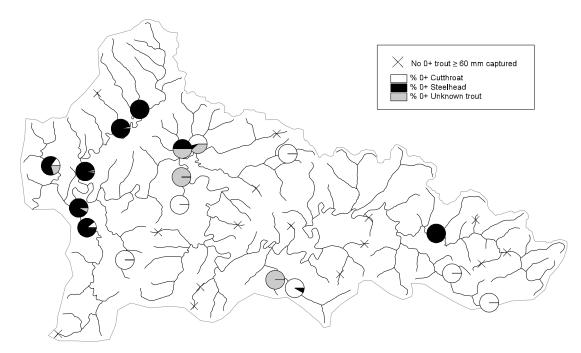


Figure 38. Species composition of 0+ trout \geq 60 mm fork length at sites electrofished in Smith River, summer 2001.

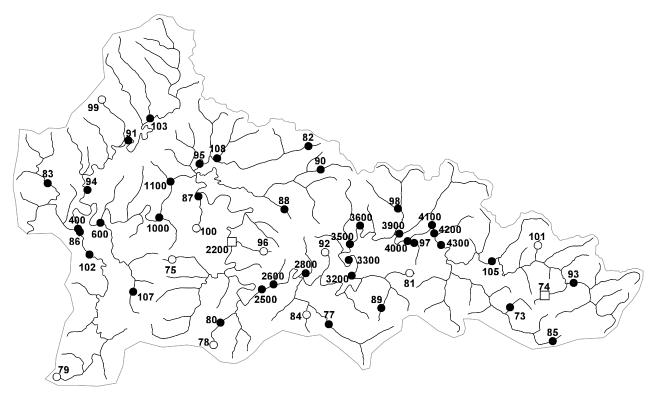


Figure 39. Location of Smith River sites visited by the snorkel crew during the summer of 2001. Solid circles are sites that were snorkeled, hollow circles are sites that had no pools meeting size or depth criteria for snorkel surveys, and hollow boxes are sites were poor water visibility precluded diver observations. The numbers above the sample points are the site numbers for referencing data in Appendix C. Site 98 and sites with numbers \geq 400 were not in common with electrofishing sites.

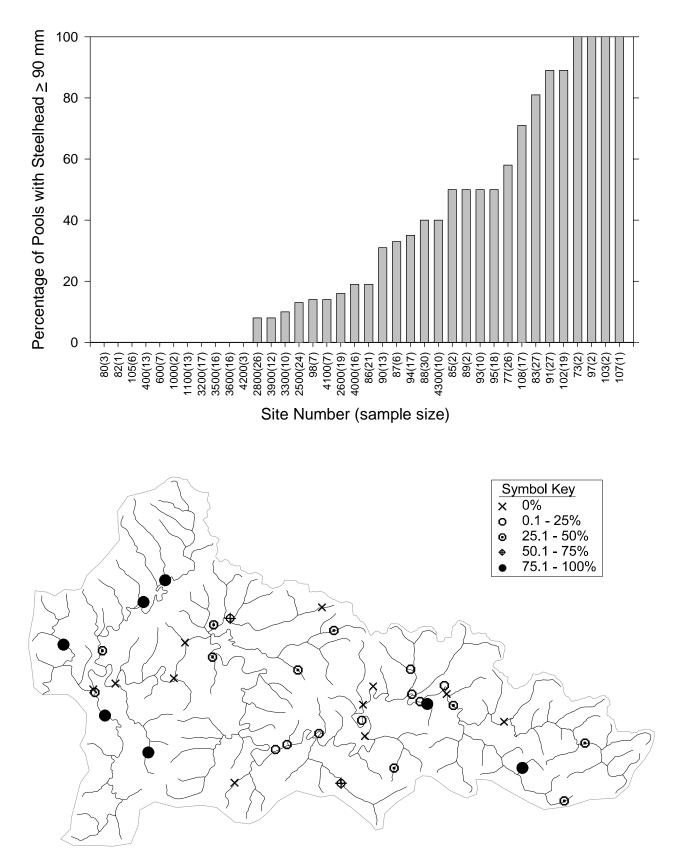


Figure 40. Percentage of pools at each site snorkeled in Smith River that contained at least one \geq 90 mm juvenile steelhead in summer 2001.

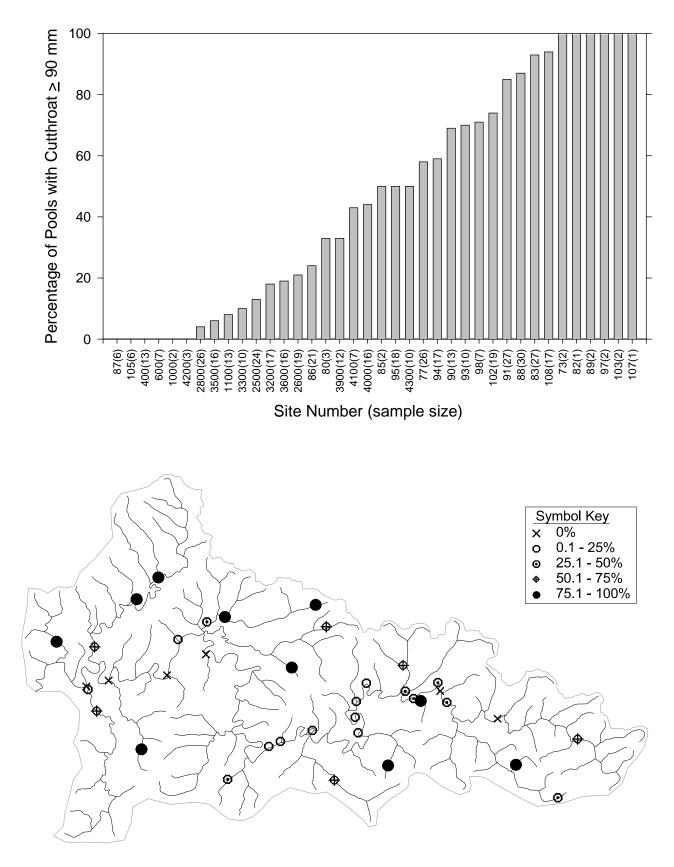


Figure 41. Percentage of pools at each site snorkeled in Smith River that contained at least one \geq 90 mm cutthroat in the summer of 2001.

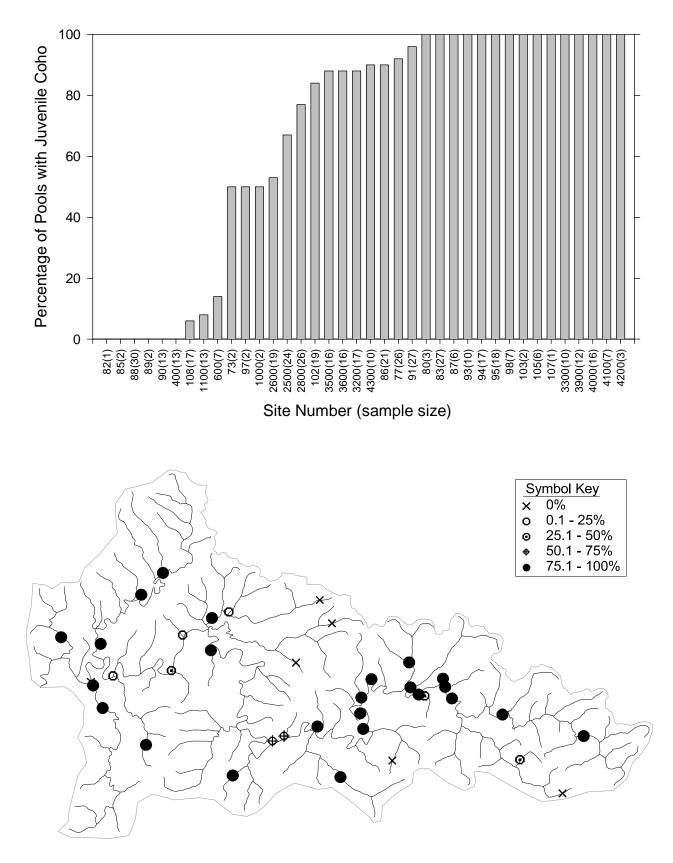


Figure 42. Percentage of pools at each site snorkeled in Smith River that contained at least one juvenile coho in the summer of 2001.

References

- Armour, C.L., K.P. Burnham, and W.S. Platts. 1983. Field methods and statistical analysis for monitoring small salmonid streams. U.S. Fish and Wildlife Service, Washington, D.C.
- Bowers, J. 2000. Oregon Department of Fish and Wildlife salmonid distribution data. Oregon Department of Fish and Wildlife, Portland.
- Dias-Ramos, S., D.L. Stevens, Jr., and A.R. Olsen. 1996. EMAP Statistical Methods Manual. Environmental Monitoring and Assessment Program, National Health and Environmental Effects Research Laboratory, Office of Research and Development, Corvallis, Oregon.
- Moore, K.M.S., K.K. Jones, and J.M. Dambacher. 1997. Methods for stream habitat surveys. Oregon Department of Fish and Wildlife, Information Report 97-4, Portland.
- National Marine Fisheries Service. 2000. Backpack electrofishing guidelines. National Marine Fisheries Service, Portland, Oregon.
- Neter, J., and W. Wasserman. 1974 Applied linear statistical models. Richard D. Irwin, Incorporated, Homewood, Illinois.
- Rodgers, J.D. 2000. Abundance of juvenile coho salmon in Oregon coastal streams: 1998 and 1999. Monitoring Program Report Number OPSW-ODFW-2000-1. Oregon Department of Fish and Wildlife, Portland.
- Rodgers, J.D. 2001. Monitoring abundance of juvenile salmonids in Oregon coastal streams, 2000. Monitoring Program Report Number OPSW-ODFW-2001-1, Oregon Department of Fish and Wildlife, Portland.
- Snedecor, G.W., and W.G. Cochran. 1980. Statistical methods. Iowa State University Press, Ames.
- Stevens, D.L., Jr. 2002. Sampling design and statistical analysis methods for the integrated biological and physical monitoring of Oregon streams. Monitoring Program Report Number OPSW-ODFW-2002-7, Oregon Department of Fish and Wildlife, Portland.
- Stevens, D.L., Jr., and A.R. Olsen. 1999. Spatially restricted surveys over time for aquatic resources. Journal of Agriculture, Biological, and Environmental Statistics 4:415-428.

Monitoring Area	Site	Basin Name, Subbasin Name	Reach	Longitude (decimal degrees)	Latitude (decimal degrees)	Number of Pools Sampled for Density	Density	Number of Pools Sampled for Percent Occurrence	Percentage of Pools Containing Juvenile Coho
North Coast	12	TRASK RIVER, SOUTH FORK	Boundary Cr	-123.5445	45.3536				14
North Coast	107	NESTUCCA RIVER, MAIN STEM AND BAY	Testament Cr	-123.5684	45.2491	24	1.15	5 24	100
North Coast		NESTUCCA RIVER, MAIN STEM AND BAY	Clear Cr	-123.8850	45.1763	32	0.00) 32	0
North Coast		NESTUCCA RIVER, MAIN STEM AND BAY	Sanders Cr (Smith Cr)	-123.8927	45.2180	3			0
North Coast	331	NESTUCCA RIVER, THREE RIVERS	Crazy Cr	-123.7673	45.1708	15			0
North Coast		NESTUCCA RIVER, MAIN STEM AND BAY	Niagara Cr	-123.6459	45.1909		0.00		0
North Coast	405	NESTUCCA RIVER, MAIN STEM AND BAY	Pheasant Cr	-123.6359	45.2118		0.04		19
North Coast	486	NESTUCCA RIVER , LITTLE NESTUCCA	Austin Cr	-123.8761	45.1087	15	0.00) 15	0
North Coast	653	NOT IDENTIFIED, NOT IDENTIFIED	Unnamed	-123.6885	45.3158	9	0.00		0
North Coast		TILLAMOOK RIVER, MAIN STEM	Tillamook R	-123.8309	45.3520	0		- 20	15
North Coast	718	SAND LAKE, MAIN STEM	Sand Cr	-123.9182	45.3395	11	0.00		0
North Coast	852	TILLAMOOK RIVER, MAIN STEM	Simmons Cr	-123.7619	45.3713	22			100
North Coast	932	NESTUCCA RIVER, MAIN STEM AND BAY	West Cr	-123.8487	45.2903	12	0.00) 12	0
North Coast	949	NESKOWIN CREEK , MAIN STEM	Sloan Cr	-123.9092	45.0700	3	0.00		0
North Coast	994	OCEAN TRIB, MAIN STEM	Rice Cr	-123.9363	45.4282	0		- 23	0
North Coast		NEHALEM RIVER, ROCK CREEK	Weed Cr	-123.4085	45.8686	5	0.00) 5	0
North Coast	1248	NEHALEM RIVER, ROCK CREEK	Rock Cr, S Fk	-123.4338	45.7717	26			0
North Coast	1377	NECANICUM RIVER, SOUTH FORK	Brandis Cr	-123.8519	45.8918	8	0.22	2 8	50
North Coast	1433	NECANICUM RIVER, SOUTH FORK	Necanicum R, S Fk	-123.8453	45.9002	26	0.38	3 26	81
North Coast	1452	ROVER CREEK, MAIN STEM	Bergsvik Cr	-123.7562	45.8952	37	0.25	5 37	92
North Coast	1496	ROVER CREEK, MAIN STEM	Little Muddy Cr	-123.9357	45.9725	7			0
North Coast	1591	ROVER CREEK, MAIN STEM	Little Joe Cr	-123.7599	45.8846	25	0.30) 25	64
North Coast	1699	NEHALEM RIVER , NORTH FORK	Rackheap Cr	-123.8036	45.7676	0		- 7	0
North Coast	1904	MIAMI RIVER,MAIN STEM	Miami R	-123.8405	45.6184	31	1.19	31	97
North Coast	2004	KILCHIS RIVER , MAIN STEM	Kilchis R, N Fk	-123.7069	45.6208	23	2.11	23	100
North Coast	2050	NEHALEM RIVER , MAIN STEM	Foley Cr	-123.8384		20	0.19		85
North Coast	2095	NEHALEM RIVER , MAIN STEM	E Humbug Cr	-123.6184	45.9235	43	1.74		100
North Coast	2160	NEHALEM RIVER , MAIN STEM	Beneke Cr	-123.5002	45.9578	0		- 25	100
North Coast		NEHALEM RIVER , MAIN STEM	Crawford Cr	-123.4663	45.9636			- 27	0
North Coast	2210	NEHALEM RIVER , MAIN STEM	Northrup Cr	-123.4585	46.0341	39			100
North Coast	2265	NEHALEM RIVER , MAIN STEM	Hamilton Cr	-123.5621	45.9724	25	0.86		100
North Coast	2291	NEHALEM RIVER , MAIN STEM	Ford Cr	-123.2718	46.0428	13	0.00) 13	0
North Coast	2352	NEHALEM RIVER, ROCK CREEK	Selder Cr, Trib B	-123.3734	45.8901	6	0.00) 6	0
North Coast	2506	NEHALEM RIVER , MAIN STEM	Fishhawk Cr	-123.3675	46.0194	22	0.08		100
North Coast	2546	NEHALEM RIVER , MAIN STEM	Coal Cr	-123.1726	45.8186	0	-	- 33	100
North Coast	2651	NEHALEM RIVER , MAIN STEM	Deer Cr	-123.2346	45.9360	0		- 38	61
North Coast	2687	NEHALEM RIVER , MAIN STEM	Oak Ranch Cr	-123.1006	45.9484	20	1.16	2 0	100
North Coast	2864	NOT IDENTIFIED, NOT IDENTIFIED	Laughlin Cr	-123.4509	45.4345	5	0.00	5	0
North Coast		WILSON RIVER, MAIN STEM	Fall Cr	-123.5889	45.4952	34	0.00	34	0
North Coast	2939	WILSON RIVER, MAIN STEM	Ben Smith Cr	-123.5158	45.5858	29	2.10) 29	100

Appendix A. Location, sample sizes, average density, and percentage of pools containing juvenile coho at coastal Monitoring Area sites sampled in 2001.

Appendix A (continued).

Monitoring Area	Site	Basin Name, Subbasin Name	Reach	Longitude (decimal degrees)	Latitude (decimal degrees)	Sampled for	Density		Percentage of Pools Containing Juvenile Coho
North Coast	3079	WILSON RIVER, MAIN STEM	Jordan Cr	-123.4967	45.5492	28	0.00	28	0
North Coast	3164	NEHALEM RIVER , MAIN STEM	Beaver Cr	-123.2114	45.7707	35	1.11	35	100
Mid-Coast	34	SIUSLAW RIVER, LAKE CREEK	Elk Cr	-123.6955	44.2035	33	0.87	33	100
Mid-Coast	73	ALSEA RIVER , FIVE RIVERS	Lobster Cr	-123.7623	44.3165	11	0.01	11	27
Mid-Coast	96	ALSEA RIVER,MAIN STEM AND BAY	Benner Cr	-123.7354		6	0.32	2 6	
Mid-Coast	127	YACHATS RIVER , MAIN STEM	Stump Cr	-123.9633	44.2759	34	0.29	34	85
Mid-Coast	194	SIUSLAW RIVER, LAKE CREEK	Indian Cr, N Fk	-123.8697	44.2171	3	0.06	i 3	33
Mid-Coast	209	SIUSLAW RIVER, LAKE CREEK	Maria Cr	-123.8946	44.1793	31	0.82	2 31	97
Mid-Coast	220	SIUSLAW RIVER, LAKE CREEK	Rogers Cr	-123.8854			0.41	35	97
Mid-Coast	274	SIUSLAW RIVER, LAKE CREEK	Fish Cr	-123.5152	44.1599	18	0.00) 18	0
Mid-Coast	292	ALSEA RIVER , FIVE RIVERS	Lobster Cr, E Fk	-123.6073	44.2532	16	0.00) 16	0
Mid-Coast		SIUSLAW RIVER, LAKE CREEK	Lake Cr	-123.4986			0.00) 12	0
Mid-Coast		ALSEA RIVER, NORTH FORK	Crooked Cr	-123.5371	44.4256	32	0.39	32	100
Mid-Coast	549	SIUSLAW RIVER, MAIN STEM	Haight Cr	-123.4931	43.8631	23	0.27	z 23	96
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Wildcat Cr, Trib Zh	-123.4914	43.9920	1	0.00) 1	0
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Wildcat Cr	-123.5427	44.0352	22	0.05	5 22	91
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Clay Cr	-123.5659			0.44	12	100
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Fawn Cr	-123.3259	43.8301	20	0.02		35
Mid-Coast		SIUSLAW RIVER, NORTH FORK	Porter Cr	-123.9528					93
Mid-Coast		SIUSLAW RIVER, NORTH FORK	Condon Cr	-123.9821	44.0985				61
Mid-Coast		TENMILE CREEK, MAIN STEM	Mill Cr	-124.0691	44.2078				
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Barber Cr	-123.7435	44.0272) 3	100
Mid-Coast	955	SIUSLAW RIVER, LAKE CREEK	Hula Cr	-123.7212	44.0990	20	1.27	⁷ 20	100
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Hanson Cr	-123.9657	44.0316				20
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Knowles Cr	-123.7282	43.9647	10	1.00		
Mid-Coast		YAQUINA RIVER, ELK CREEK	Spout Cr	-123.6859		35	0.27	7 35	100
Mid-Coast		YAQUINA RIVER, LITTLE ELK CREEK	Oglesby Cr	-123.7259	44.6381				67
Mid-Coast		SILETZ RIVER, ROCK CREEK	Steere Cr	-123.6574					100
Mid-Coast		SILETZ RIVER, MAIN STEM	Mill Cr, N Fk	-123.7582		23	0.85		100
Mid-Coast	1307	SILETZ RIVER, MAIN STEM	Dewey Cr	-123.9592	44.7226				0
Mid-Coast		CUMMINS CR, MAIN STEM	Cummins Cr	-124.0623		41	0.08		73
Mid-Coast		BIG CREEK, MAINSTEM, SFK, DICK'S FK	Big Cr. S Fk	-124.0794	44.3538	31	0.01	31	10
Mid-Coast		ALSEA RIVER, DRIFT CREEK	Flynn Cr	-123.8512			1.22		100
Mid-Coast		YAQUINA RIVER , ELK CREEK	Deer Cr	-123.7778					100
Mid-Coast		ALSEA RIVER , FIVE RIVERS	Camp Cr	-123.7581	44.2859				
Mid-Coast		ALSEA RIVER , FIVE RIVERS	Five Rivers	-123.8205					57
Mid-Coast		SIUSLAW RIVER, LAKE CREEK	Bear Cr, S Fk	-123.6772					95
Mid-Coast		ALSEA RIVER , NORTH FORK	Seeley Cr	-123.5257	44.4080	23	-		65
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Siuslaw R	-123.5055					0
Mid-Coast		SIUSLAW RIVER, MAIN STEM	Siuslaw R	-123.6288					0

Appendix A (continued).

Monitoring Area	Site	Basin Name, Subbasin Name	Reach	Longitude (decimal degrees)	Latitude (decimal degrees)	for	Coho Density		of Pools
Mid-Coast	1876	BIG CREEK, MAIN STEM & SFK	Big Cr	-124.1058	44.1707			2 36	
Mid-Coast	2035	ALSEA RIVER , DRIFT CREEK	Trout Cr	-123.9346	44.4883	31	1.82	2 31	100
Mid-Coast	2066	ALSEA RIVER,MAIN STEM AND BAY	Carns Canyon	-123.7623	44.4024	12	0.13	3 12	17
Mid-South Coast		COOS RIVER, SOUTH FORK	Little Cow Cr	-123.6141					0
Mid-South Coast		COOS RIVER, SOUTH FORK	Bottom Cr	-123.7869					100
Mid-South Coast		COQUILLE RIVER, SOUTH FORK	Rowland Cr	-124.1788	42.9035				
Mid-South Coast		COQUILLE RIVER, SOUTH FORK	Baker Cr	-124.1124	42.9025	23	0.05		
Mid-South Coast	326	FOURMILE CR, MAIN STEM	Fourmile Cr	-124.3316	42.9869	0		- 15	100
Mid-South Coast	361	COQUILLE RIVER , EAST FORK	Weekly Cr	-124.0500	43.1053	14	1.72	2 14	100
Mid-South Coast	451	COQUILLE RIVER, NORTH FORK	Middle Cr	-123.8790					
Mid-South Coast	689	COQUILLE RIVER, NORTH FORK	Johns Cr	-124.0599	43.0782	. 12	1.42	2 12	100
Mid-South Coast	740	COQUILLE RIVER, MIDDLE FORK	Rock Cr	-123.9270				35	
Mid-South Coast		SIXES RIVER,MAIN STEM	Sixes R	-124.1933				-	56
Mid-South Coast	858	SIXES RIVER,MAIN STEM	Sixes R	-124.3052				-	
Mid-South Coast	884	FLORAS CREEK, MAIN STEM	Floras Cr	-124.4029			0.01	12	
Mid-South Coast	1175	COOS RIVER , MILLICOMA RIVER	Hendrickson Cr	-124.0721	43.3968	0	-	- 2	100
Mid-South Coast	1200	COOS RIVER, SOUTH FORK	Bessey Cr	-124.0283	43.3807	3	0.00		0
Mid-South Coast	1260	COQUILLE RIVER , NORTH FORK	Coquille R, Little N Fk	-123.9451	43.3079	27	1.64		100
Mid-South Coast		COQUILLE RIVER, NORTH FORK	Coquille R, N Fk	-123.9610					100
Mid-South Coast		COOS RIVER, SOUTH FORK	Wren Smith Cr	-124.0770					
Mid-South Coast	1342	COOS RIVER, MILLICOMA RIVER	Millicoma R, E Fk	-123.8800		9	0.57	' 9	100
Mid-South Coast	1385	COOS RIVER , MILLICOMA RIVER	Millicoma R, E Fk	-123.8746	43.4195	24			100
Mid-South Coast	1403	COOS RIVER , MILLICOMA RIVER	Schumacher Cr	-124.0391	43.4829	14	0.00) 14	0
Mid-South Coast		COOS RIVER, MAIN STEM	Catching Cr	-124.1554			-	- 2	100
Mid-South Coast		COOS RIVER, MAIN STEM	Winchester Cr	-124.3145				- 10	20
Mid-South Coast		COQUILLE RIVER, MAIN STEM AND BAY	Mack Cr	-124.3320			0.00		0
Mid-South Coast		TAHKENITCH CREEK, FIVEMILE CREEK	Fivemile Cr	-124.0246				- 33	100
Mid-South Coast		SILTCOOS RIVER, WOAHINK LAKE	Miller Cr	-124.0642					0
Mid-South Coast		COOS RIVER, SOUTH FORK	Williams R	-123.6707	43.2377		1.72	39	100
Mid-South Coast		SIXES RIVER , MAIN STEM	Sixes R	-124.3930			0.00) 3	0
Mid-South Coast	2303	NOT IDENTIFIED, NOT IDENTIFIED	Unnamed	-124.1709			-	- 4	0
Mid-South Coast		TENMILE CREEK , EEL LAKE	Eel Cr	-124.1833		-		- 24	0
Mid-South Coast		COOS RIVER , MILLICOMA RIVER	Packard Cr	-124.0236			-		50
Umpqua		UMPQUA RIVER, ELK CREEK	Elk Cr	-123.1784				- 23	0
Umpqua		UMPQUA RIVER, SOUTH UMPQUA	Roberts Cr	-123.3784				- 16	
Umpqua		UMPQUA RIVER, SOUTH UMPQUA	Wood Cr	-123.3956					100
Umpqua		UMPQUA RIVER, SOUTH UMPQUA	Whitehorse Cr	-123.1660			0.00	-	0
Umpqua		UMPQUA RIVER, SOUTH UMPQUA	Clear Cr	-123.2445				- 10	
Umpqua		UMPQUA RIVER, SOUTH UMPQUA	Quines Cr	-123.2642			0.69) 17	100
Umpqua	972	UMPQUA RIVER, SOUTH UMPQUA	Bull Run Cr	-123.2451	42.7568	1	1.62	2 1	100

Appendix A (continued).

Monitoring Area	Site	Basin Name, Subbasin Name	Reach	Longitude (decimal degrees)	Latitude (decimal degrees)	Number of Pools Sampled for Density	Density	Sampled for	of Pools Containing Juvenile
Jmpqua	988	UMPQUA RIVER, MAIN STEM AND BAY	Wind Cr	-124.0957	43.6553	0		- 7	100
Jmpqua	1026	UMPQUA RIVER, MAIN STEM AND BAY	Scholfield Cr	-124.0131	43.6281	29	0.00	29) (
Jmpqua	1047	UMPQUA RIVER, MAIN STEM AND BAY	Camp Cr	-123.8434	43.6163	0		- 34	
Jmpqua	1100	UMPQUA RIVER, MAIN STEM AND BAY	Case Knife Cr	-123.6512	43.4386	21	0.09	21	
Jmpqua		UMPQUA RIVER , MAIN STEM AND BAY	Wolf Cr	-123.6095					100
Jmpqua	1116	UMPQUA RIVER, MAIN STEM AND BAY	Heddin Cr	-123.6365	43.6070			- 16	
Jmpqua	1146	UMPQUA RIVER , MAIN STEM AND BAY	Lutsinger Cr	-123.7255	43.6363				
Jmpqua	1151	UMPQUA RIVER , MAIN STEM AND BAY	Lutsinger Cr	-123.7177	43.6325	28	0.66	5 28	100
Jmpqua	1158	UMPQUA RIVER , MAIN STEM AND BAY	Camp Cr	-123.7527	43.6079			- 4	100
Jmpqua		UMPQUA RIVER, MAIN STEM AND BAY	Mcgee Cr	-123.5460	43.5201	21	0.01		
Jmpqua		UMPQUA RIVER, SMITH RIVER	S Sister Cr	-123.6624	43.8298			- 13	100
Jmpqua	1358	UMPQUA RIVER , SMITH RIVER	Blackwell Cr	-123.7510	43.8084				. (
Jmpqua	1394	UMPQUA RIVER , MAIN STEM AND BAY	Wells Cr	-123.7978	43.6766				
Jmpqua	1423	UMPQUA RIVER , MAIN STEM AND BAY	Weatherly Cr	-123.7276		23	0.72		
Jmpqua		UMPQUA RIVER, SOUTH UMPQUA	Tenmile Cr	-123.5657	43.0914			- 14	
Jmpqua	2309	UMPQUA RIVER, SOUTH UMPQUA	Falcon Cr	-122.5452		-			i (
Jmpqua		UMPQUA RIVER, SOUTH UMPQUA	Stampede Cr	-122.8163	42.9039				
Jmpqua	2368	UMPQUA RIVER, SOUTH UMPQUA	Boulder Cr	-122.7816	43.0717	33	0.05		
Jmpqua	2389	UMPQUA RIVER, SOUTH UMPQUA	Squaw Cr	-122.6745	42.9603				
Jmpqua		UMPQUA RIVER, SOUTH UMPQUA	Crooked Cr	-122.6564	42.9663				
Jmpqua		UMPQUA RIVER, SOUTH UMPQUA	Black Canyon Cr	-122.6907	42.9453				
Jmpqua		UMPQUA RIVER, NORTH UMPQUA	Limpy Cr	-122.6783					(
Jmpqua		UMPQUA RIVER, NORTH UMPQUA	Cavitt Cr	-122.9934		27	0.00) 27	(
Jmpqua	2518	UMPQUA RIVER, SOUTH UMPQUA	Shively Cr, E Fk	-123.1276	42.8858	1			(
Jmpqua		UMPQUA RIVER, SOUTH UMPQUA	N Myrtle Cr	-123.2121	43.0483	21			100
South Coast	20	ROGUE RIVER , MAIN STEM	Grave Cr	-123.2312	42.6438				6 (
South Coast		ROGUE RIVER , MAIN STEM	Grave Cr	-123.1686					
South Coast		ROGUE RIVER , MAIN STEM	Grave Cr	-123.1700					
South Coast		ROGUE RIVER , MAIN STEM	Sugarpine Cr	-122.6829		-			
South Coast		ROGUE RIVER , MAIN STEM	Flat Cr	-122.7145					
South Coast		ROGUE RIVER, BIG BUTTE CREEK	Big Butte Cr, N Fk	-122.5363	42.5529				
South Coast		ROGUE RIVER, BIG BUTTE CREEK	Big Butte Cr, N Fk	-122.4976					
South Coast		ROGUE RIVER , MAIN STEM	Trail Cr, W Fk	-122.8816					i 100
South Coast		ROGUE RIVER , MAIN STEM	Jumpoff Joe Cr	-123.3872	42.5441	6			
South Coast		ROGUE RIVER, MAIN STEM	Grave Cr	-123.4201	42.6377) (
South Coast		ROGUE RIVER, MAIN STEM	Jumpoff Joe Cr	-123.4832	42.5235				(
South Coast		ROGUE RIVER , MAIN STEM	Shasta Costa Cr	-123.9939					
South Coast		ROGUE RIVER , MAIN STEM	Shasta Costa Cr	-123.9807	42.5875				
South Coast		ROGUE RIVER, MAIN STEM	Billings Cr	-124.0498		-		-	
South Coast	397	ROGUE RIVER, LOBSTER CREEK	Lobster Cr	-124.2955	42.5175	9	0.00) 9	22

Appendix A	(continued)	
	(CONTINUED)	

Monitoring Area	Site		ıme, Subbasin Name	Reach	,	(decimal degrees)	for	Coho Density (fish/m2)	Pools Sampled for Percent Occurrence	Juvenile
South Coast		,	LOBSTER CREEK	Lobster Cr	-124.2551	42.5999	11	0.01		45
South Coast	410	ROGUE RIVER,	LOBSTER CREEK	Lobster Cr, N Fk	-124.2476	42.6285	14	0.00	14	0
South Coast	415	ROGUE RIVER,	LOBSTER CREEK	Lobster Cr, N Fk	-124.2422	42.6340	15	0.00	15	0
South Coast	453	ROGUE RIVER,	ILLINOIS RIVER	Fall Cr	-123.7722	42.3008	11	0.03	11	9
South Coast	486	ROGUE RIVER,	APPLEGATE RIVER	Williams Cr, W Fk	-123.3248	42.1953	16	0.45	16	75
South Coast	505	ROGUE RIVER,	ILLINOIS RIVER	Althouse Cr	-123.5397	42.1130	14	1.15	14	100
South Coast	548	ROGUE RIVER,	ILLINOIS RIVER	Little Grayback Cr	-123.4765	42.1592	16	1.35	16	100
South Coast	577	ROGUE RIVER,	ILLINOIS RIVER	Illinois R, W Fk	-123.7660	42.0118	32	0.87	32	100
South Coast	594	ROGUE RIVER,	ILLINOIS RIVER	Illinois R, W Fk	-123.7701	42.0024	24	0.29	24	88
South Coast	623	ROGUE RIVER ,	MAIN STEM	Little Butte Cr, S Fk	-122.4914	42.3599	12	1.16	12	67
South Coast	629	ROGUE RIVER ,	MAIN STEM	Soda Cr	-122.5085	42.3526	27	0.58	27	56
South Coast	631	ROGUE RIVER ,	MAIN STEM	Little Butte Cr, S Fk	-122.5334	42.3561	11	1.39	11	100
South Coast	706	ROGUE RIVER ,	MAIN STEM	Louse Cr	-123.2730	42.4963	9	0.00	9	0
South Coast	722	ROGUE RIVER ,	MAIN STEM	Louse Cr	-123.3407	42.4949	3	0.00	3	0
South Coast	745	ROGUE RIVER,	APPLEGATE RIVER	Williams Cr	-123.2501	42.2620	9	0.22	9	100
South Coast	781	ROGUE RIVER,	APPLEGATE RIVER	Williams Cr, E Fk	-123.2606	42.1785	8	0.00	8	0
South Coast	828	ROGUE RIVER,	APPLEGATE RIVER	Cedar Log Cr	-123.5966	42.3981	1	0.00	1	0
South Coast	834	ROGUE RIVER ,	MAIN STEM	Shan Cr	-123.5051	42.4535	15	0.01	15	27

		Number of Cutthroat >90 mm				Wetted Surface Area (m ²)	Average Wetted Width (m)	Maximum Depth (cm)	Dry Channel Length (m)	Glide Length (m)	Glide Surface Area (m ²)	Number of Glides	Pool Length (m)	Pool Surface Area (m2)	Number of Pools	Riffle/ Rapid Length (m)	Riffle/ Rapid Surface Area (m2)	Number of Riffles/ Rapids	% Silt/ Sand		% Cobble/ Boulder	% Bedrock
73	64	2	0) 1	44.3	25.9	1.3	35	24.4	0.0	0.0	0	19.9	25.9	4	0.0	0	0	43.5	27.3	29.2	0.0
74	0	11	C	0 0	70.0	210.3	3.1	100	0.0	0.0	0.0	0	70	210.3	6	0.0	0.0	0	71.5	23.3	5.1	0.0
75	0	0	0	0 0	50.0	0.0	0.0	0	50.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0
77	47	29	0	64	141.6	406.2	2.4	71	0.0	0.0	0.0	0	104.7	346.5	5	36.9	59.7	3	44.2	37.0	18.8	0.0
78	0	0	0	0 0	30.0	0.0	0.0	0	30.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0
79	0	0	0	0 0	34.6	14.2	0.7	20	4.3	10.5	7.3	1	1.8	2.7	1	18.0	4.2	1	51.4	22.3	23.8	2.6
80	78	0	0	3	67.9	109.6	1.7	30	3.7	0.0	0.0	0	34.6	82.4	3	29.6	27.2	3	34.6	41.7	20.4	3.3
81	0	0	0	0 0	34.0	0.0	0.0	0	34.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0	0.0	0.0
82	0	4	0) 1	27.0	32.7	1.2	50	0.0	0.0	0.0	0	13.7	23.1	3	13.3	9.5	2	81.2	7.3	9.9	1.6
83	754	7	38	114	104.4	510.2	4.5	58	0.0	0.0	0.0	0	54.5	261.7	2	49.9	248.5	2	13.7	29.2	48.4	8.7
84	19	4	0	4	52.9	91.6	1.9	35	0.0	0.0	0.0	0	17	40.3	3	35.9	51.3	2	22.0	42.0	36.0	0.0
85	0	4	0	11	53.2	69.9	1.1	43	3.6	0.0	0.0	0	36	60.8	7	13.6	9.1	4	76.0	16.8	7.2	0.0
86	96	10	10	120	178.8	1155.3	6.3	73	0.0	0.0	0.0	0	88.4	533.6	6	90.4	621.8	5	17.4	15.7	30.8	36.0
87	177	2	0) 1	77.1	147.3	2.0	23	0.0	0.0	0.0	0	37.2	87.8	3	39.9	59.5	2	34.0	24.7	20.7	20.6
88	0	10	1	4	101.3	236.5	2.4	50	0.0	0.0	0.0	0	44.6	102.1	6	56.7	134.4	4	22.7	30.9	39.9	6.6
89	0	2	0) 2	47.8	21.5	0.9	60	23.6	0.0	0.0	0	7.5	9.4	3	16.7	12.1	3	27.5	38.7	33.8	0.0
90	0	0	0	2	94.0	160.4	2.1	45	0.0	10.1	24.9	1	15.4	43.5	2	68.5	92.0	2	5.7	6.1	1.8	86.5
91	413	29	55	214	275.7	2198.1	7.2	73	0.0	0.0	0.0	0	242.2	1923.2	8	33.5	274.9	2	17.2	33.9	28.5	20.5
92	0	0	C	0 0	22.6	14.5	0.7	15	0.0	0.0	0.0	0	1.4	1.1	1	21.2	13.4	1	38.5	36.9	24.6	0.0
93	288	23	2	6	126.8	703.7	5.2	62	0.0	0.0	0.0	0	115.8	664.1	6	11.0	39.6	1	81.8	10.0	8.2	0.0
94	226	11	23	111	299.1	3567.2	12.5	112	0.0	0.0	0.0	0	213.1	2395.7	5	86.0	1171.5	2	13.7	10.9		42.1
95	658	23	19	61	202.9	1002.3	4.8	46	0.0	0.0	0.0	0	105	538.3	8	97.9	464.0	7	14.8	11.1	22.6	51.5
96	0	3	0	0 0	31.1	16.2	0.7	25	6.0	0.0	0.0	0	7.9	8.8	4	17.2	7.4	4	57.8	31.9		0.0
97	14	6	0	0 0	57.0	52.8	1.4	43	20.7	0.0	0.0	0	36.3	52.8	5	0.0	0.0	0	76.3	22.8		0.0
99	0	0	0	0 0	30.0	0.0	0.0	0	30.0	0.0	0.0	0	0	0.0	0	0.0	0.0	0	0.0	0.0		0.0
100	0	9	0	8	40.4	21.4	0.7	37	9.9	0.0	0.0	0	16.6	15.0	3	13.9	6.4	2	61.6	38.4	0.0	0.0
101	0	0	0	0	19.5	10.7	0.7	6	2.4	0.0	0.0	0	1.6	1.4	1	15.5	9.3	1	30.7	34.6		0.0
102	153	23	30	307	222.4	2412.2	11.0	95		0.0	0.0	0	100.7	1071.9	5	121.7	1340.3	3	17.3	4.8		66.7
103	235	2	4	74	81.8	831.1	10.1	80		0.0	0.0	0	81.8	831.1	5	0.0	0.0	0	20.9	12.3		57.8
105	239	3	7	21	167.8	809.9	4.4	52		0.0	0.0	0	137.3	687.2	7	30.5	122.7	4	22.6	47.3	24.7	5.4
107	0	19	4	11	72.4	150.8	2.1	59	0.0	0.0	0.0	0	51.3	107.3	5	21.1	43.4	4	40.5	31.6		0.0
108	372	22	4	28	100.0	279.6	2.7	39	0	0.0	0.0	0	26.1	77.2	3	73.9	202.4	4	22.6	17.8	17.6	42.0

Appendix B. Estimated number of juvenile salmonids and physical characteristics of sites sampled by electrofishing in Smith River, summer 2001. See Figure 23 for location of sample sites.

Appendix C. Number of pools snorkeled, fish observed, and density of juvenile coho, cutthroat and steelhead based on snorkel surveys in Smith River, summer 2001. See Figure 39 for location of sample sites.

			Number of	Fish Obse		Adjuste	d Counts		Average Fis	sh/m²
	Number of				Unknown		h			
	Pools		Cutthroat			Cutthroat	Steelhead ^b		Cutthroat	
Site	Snorkeled	Coho	<u>></u> 90 mm	<u>></u> 90 mm	mm	^a >90 mm	>90 mm	Coho	<u>></u> 90 mm	<u>></u> 90 mm
73	2	7	1	0	4	3		0.2083		
77	26	182	18	25	16	27		0.0966		0.016
80		21	1	0		1		0.3045		
82	1	0		0		1		0.0000		
83	27	4171	68	88	31	86		1.9352		
85		0		0		2		0.0000		
86		225	1			4		0.0703		
87	6	154	0		0	0		1.0990		
88	30	0	76	0		85		0.0000		
89		0		0		2		0.0000		
90		0	13			15		0.0000		
91	27	427	7	27	28	23	39	0.0824	0.0053	0.012
93	10	196	4	2	6	7	5	0.2558	0.0068	0.00
94	17	440			6	14	5	0.0953	0.0023	0.00
95	18	1951	20	12	8	24	16	0.7963	0.0116	0.00
97	2	1	2	0	2	3	1	0.0238	0.1084	0.04
98	7	125	6	0		7	0	0.7947	0.0417	0.00
102	19	220	2	50	32	20	64	0.1233	0.0100	0.04
103	2	119	2	10	7	6	13	0.2646	0.0133	0.02
105	6	64	0		0	0		0.0996		0.00
107	1	1	0	0	1	1	0	0.0351	0.0199	0.01
108	17	90	51	6	24	65	16	0.3151	0.1894	0.05
400	13	0	0	0	0	0	0	0.0000	0.0000	0.00
600	7	1	0	0	0	0	0	0.0010	0.0000	0.00
1000	2	1	0			0		0.0001		
1100	13	1	1	0	0	1	0	0.0003	0.0003	0.00
2500		54	0	0				0.0157	0.0004	
2600	19	29	3	0		5		0.0266	0.0075	0.00
2800	26	88			1	7	1	0.0129	0.0000	0.00
3200		184	4		0	4		0.0244		
3300		167	0		1	1		0.0354		0.00
3500		201	1	0	0	1		0.0494		0.00
3600		190		0		5		0.0377		
3900		340		0		8		0.1042		0.00
4000		506		-		11		0.1171	0.0031	0.00
4100		470				7		0.0959		
4200						-		0.0498		
4300								0.1346		

^aAdjusted cutthroat = observed cutthroat + (unknown trout x .567) ^bAdjusted steelhead = observed steelhead + (unknown trout x .433)

^cSome sites will show a density of steelhead > 0 even though no steelhead are recorded for under the adjusted steelhead count category. This is because the adjusted counts are rounded to the nearest whole number, while the density estimates where obtained averaging the non-rounded adjusted counts for each pool snorkeled.